Suppr超能文献

留学生心理健康的机器学习分析。

Mental health analysis of international students using machine learning techniques.

机构信息

Cardiff School of Technologies, Cardiff Metropolitan University, Llandaff Campus, Cardiff, Wales, United Kingdom.

出版信息

PLoS One. 2024 Jun 6;19(6):e0304132. doi: 10.1371/journal.pone.0304132. eCollection 2024.

Abstract

International students' mental health has become an increasing concern in recent years, as more students leave their country for better education. They experience a wide range of challenges while studying abroad that have an impact on their psychological well-being. These challenges can include language obstacles, cultural differences, homesickness, financial issues and other elements that could severely impact the mental health of international students. Given the limited research on the demographic, cultural, and psychosocial variables that influence international students' mental health, and the scarcity of studies on the use of machine learning algorithms in this area, this study aimed to analyse data to understand the demographic, cultural factors, and psychosocial factors that impact mental health of international students. Additionally, this paper aimed to build a machine learning-based model for predicting depression among international students in the United Kingdom. This study utilized both primary data gathered through an online survey questionnaire targeted at international students and secondary data was sourced from the 'A Dataset of Students' Mental Health and Help-Seeking Behaviors in a Multicultural Environment,' focusing exclusively on international student data within this dataset. We conducted data analysis on the primary data and constructed models using the secondary data for predicting depression among international students. The secondary dataset is divided into training (70%) and testing (30%) sets for analysis, employing four machine learning models: Logistic Regression, Decision Tree, Random Forest, and K Nearest Neighbor. To assess each algorithm's performance, we considered metrics such as Accuracy, Sensitivity, Specificity, Precision and AU-ROC curve. This study identifies significant demographic variables (e.g., loan status, gender, age, marital status) and psychosocial factors (financial difficulties, academic stress, homesickness, loneliness) contributing to international students' mental health. Among the machine learning models, the Random Forest model demonstrated the highest accuracy, achieving an 80% accuracy rate in predicting depression.

摘要

近年来,随着越来越多的学生为了接受更好的教育而离开自己的国家,留学生的心理健康问题越来越受到关注。他们在出国留学期间会遇到各种挑战,这些挑战会对他们的心理健康产生影响。这些挑战可能包括语言障碍、文化差异、思乡、经济问题以及其他可能严重影响留学生心理健康的因素。鉴于目前对影响留学生心理健康的人口统计学、文化和社会心理变量的研究有限,以及在这一领域使用机器学习算法的研究很少,本研究旨在分析数据,以了解影响留学生心理健康的人口统计学、文化因素和社会心理因素。此外,本论文旨在建立一个基于机器学习的模型,用于预测英国留学生的抑郁情况。本研究既利用了通过面向留学生的在线问卷调查收集的原始数据,也利用了源自“多文化环境中学生心理健康和寻求帮助行为数据集”的二手数据,该数据集专门关注该数据集中的国际学生数据。我们对原始数据进行了数据分析,并使用二手数据构建了预测留学生抑郁的模型。二手数据集分为训练集(70%)和测试集(30%),用于分析,采用了四种机器学习模型:逻辑回归、决策树、随机森林和 K 最近邻。为了评估每个算法的性能,我们考虑了准确度、敏感度、特异性、精度和 AU-ROC 曲线等指标。本研究确定了一些显著的人口统计学变量(例如贷款状况、性别、年龄、婚姻状况)和社会心理因素(经济困难、学业压力、思乡、孤独),这些因素会影响留学生的心理健康。在机器学习模型中,随机森林模型表现出最高的准确度,在预测抑郁方面达到了 80%的准确度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12b4/11156345/da2418fa7f38/pone.0304132.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验