Suppr超能文献

常见的数据模型可简化代谢组学处理和注释,并在 Python 管道中实现。

Common data models to streamline metabolomics processing and annotation, and implementation in a Python pipeline.

机构信息

The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, United States of America.

Institute of Parasitology, McGill University, Montreal, Quebec, Canada.

出版信息

PLoS Comput Biol. 2024 Jun 6;20(6):e1011912. doi: 10.1371/journal.pcbi.1011912. eCollection 2024 Jun.

Abstract

To standardize metabolomics data analysis and facilitate future computational developments, it is essential to have a set of well-defined templates for common data structures. Here we describe a collection of data structures involved in metabolomics data processing and illustrate how they are utilized in a full-featured Python-centric pipeline. We demonstrate the performance of the pipeline, and the details in annotation and quality control using large-scale LC-MS metabolomics and lipidomics data and LC-MS/MS data. Multiple previously published datasets are also reanalyzed to showcase its utility in biological data analysis. This pipeline allows users to streamline data processing, quality control, annotation, and standardization in an efficient and transparent manner. This work fills a major gap in the Python ecosystem for computational metabolomics.

摘要

为了规范代谢组学数据分析并促进未来的计算发展,拥有一套定义良好的通用数据结构模板是至关重要的。在这里,我们描述了一组涉及代谢组学数据处理的数据结构,并说明了它们如何在一个功能齐全的以 Python 为中心的管道中使用。我们展示了该管道的性能,以及使用大规模 LC-MS 代谢组学和脂质组学数据和 LC-MS/MS 数据进行注释和质量控制的详细信息。还重新分析了多个以前发表的数据集,以展示其在生物数据分析中的实用性。该管道允许用户以高效和透明的方式简化数据处理、质量控制、注释和标准化。这项工作填补了 Python 生态系统中计算代谢组学的一个主要空白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fabd/11185459/2a9cfc545171/pcbi.1011912.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验