Department of Electrical and Computer Engineering, University of Illinois Chicago, Chicago, IL, USA.
Department of Orthodontics (M/C 841), College of Dentistry, University of Illinois Chicago, 801 S. Paulina Street, RM 131, Chicago, IL, 60612-7211, USA.
Sci Rep. 2024 Jun 7;14(1):13082. doi: 10.1038/s41598-024-63744-y.
Accurate classification of tooth development stages from orthopantomograms (OPG) is crucial for dental diagnosis, treatment planning, age assessment, and forensic applications. This study aims to develop an automated method for classifying third molar development stages using OPGs. Initially, our data consisted of 3422 OPG images, each classified and curated by expert evaluators. The dataset includes images from both Q3 (lower jaw left side) and Q4 (lower right side) regions extracted from panoramic images, resulting in a total of 6624 images for analysis. Following data collection, the methodology employs region of interest extraction, pre-filtering, and extensive data augmentation techniques to enhance classification accuracy. The deep neural network model, including architectures such as EfficientNet, EfficientNetV2, MobileNet Large, MobileNet Small, ResNet18, and ShuffleNet, is optimized for this task. Our findings indicate that EfficientNet achieved the highest classification accuracy at 83.7%. Other architectures achieved accuracies ranging from 71.57 to 82.03%. The variation in performance across architectures highlights the influence of model complexity and task-specific features on classification accuracy. This research introduces a novel machine learning model designed to accurately estimate the development stages of lower wisdom teeth in OPG images, contributing to the fields of dental diagnostics and treatment planning.
准确地对全景片(OPG)中的牙齿发育阶段进行分类对于牙科诊断、治疗计划、年龄评估和法医学应用至关重要。本研究旨在开发一种使用 OPG 自动分类第三磨牙发育阶段的方法。最初,我们的数据包括 3422 张 OPG 图像,每张图像都由专家评估员进行分类和整理。该数据集包括从全景图像中提取的 Q3(左下颚)和 Q4(右下颚)区域的图像,总共分析了 6624 张图像。在数据收集之后,该方法采用感兴趣区域提取、预过滤和广泛的数据增强技术来提高分类准确性。该深度学习网络模型包括 EfficientNet、EfficientNetV2、MobileNet Large、MobileNet Small、ResNet18 和 ShuffleNet 等架构,专门针对此任务进行了优化。我们的研究结果表明,EfficientNet 实现了 83.7%的最高分类准确性。其他架构的准确性范围在 71.57%至 82.03%之间。不同架构之间的性能差异突出了模型复杂性和特定任务特征对分类准确性的影响。这项研究引入了一种新的机器学习模型,旨在准确估计 OPG 图像中下颌智齿的发育阶段,为牙科诊断和治疗计划领域做出贡献。