, Bregenz, Austria.
South University, Savannah, GA, USA.
Biol Cybern. 2024 Aug;118(3-4):215-227. doi: 10.1007/s00422-024-00992-1. Epub 2024 Jun 7.
The intertwining of space and time poses a significant scientific challenge, transcending disciplines from philosophy and physics to neuroscience. Deciphering neural coding, marked by its inherent spatial and temporal dimensions, has proven to be a complex task. In this paper, we present insights into temporal and spatial modes of neural coding and their intricate interplay, drawn from neuroscientific findings. We illustrate the conversion of a purely spatial input into the temporal form of a singular spike train, demonstrating storage, transmission to remote locations, and recall through spike bursts corresponding to Sharp Wave Ripples. Moreover, the converted temporal representation can be transformed back into a spatiotemporal pattern. The principles of the transformation process are illustrated using a simple feed-forward spiking neural network. The frequencies and phases of Subthreshold Membrane potential Oscillations play a pivotal role in this framework. The model offers insights into information multiplexing and phenomena such as stretching or compressing time of spike patterns.
时空交织构成了重大的科学挑战,涉及哲学、物理学到神经科学等多个学科领域。神经编码具有内在的时空维度,对其进行破译是一项复杂的任务。本文基于神经科学的研究成果,深入探讨了神经编码的时空模式及其复杂的相互作用。我们展示了如何将纯粹的空间输入转换为单个尖峰序列的时间形式,演示了通过与 Sharp Wave Ripples 对应的尖峰爆发来实现存储、远程传输和回忆。此外,转换后的时间表示可以再转换回时空模式。我们使用简单的前馈尖峰神经网络来说明转换过程的原理。亚阈膜电位振荡的频率和相位在这个框架中起着关键作用。该模型为信息复用以及诸如拉伸或压缩尖峰模式的时间等现象提供了深入的见解。