Department of Pulmonology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua, Zhejiang, China.
School of basic medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
BMC Pulm Med. 2024 Jun 6;24(1):271. doi: 10.1186/s12890-024-03079-6.
This study leverages a two-sample Mendelian Randomization (MR) approach to explore the causal relationships between 1,400 metabolites and pulmonary fibrosis, using genetic variation as instrumental variables. By adhering to stringent criteria for instrumental variable selection, the research aims to uncover metabolic pathways that may influence the risk and progression of pulmonary fibrosis, providing insights into potential therapeutic targets.
Utilizing data from the OpenGWAS project, which includes a significant European cohort, and metabolite GWAS data from the Canadian Longitudinal Aging Study (CLSA), the study employs advanced statistical methods. These include inverse variance weighting (IVW), weighted median estimations, and comprehensive sensitivity analyses conducted using the R software environment to ensure the robustness of the causal inferences.
The study identified 62 metabolites with significant causal relationships with pulmonary fibrosis, highlighting both risk-enhancing and protective metabolic factors. This extensive list of metabolites presents a broad spectrum of potential therapeutic targets and biomarkers for early detection, underscoring the metabolic complexity underlying pulmonary fibrosis.
The findings from this MR study significantly advance our understanding of the metabolic underpinnings of pulmonary fibrosis, suggesting that alterations in specific metabolites could influence the risk and progression of the disease. These insights pave the way for the development of novel diagnostic and therapeutic strategies, emphasizing the potential of metabolic modulation in managing pulmonary fibrosis.
本研究利用两样本孟德尔随机化(MR)方法,利用遗传变异作为工具变量,探讨 1400 种代谢物与肺纤维化之间的因果关系。通过严格的工具变量选择标准,该研究旨在揭示可能影响肺纤维化风险和进展的代谢途径,为潜在的治疗靶点提供见解。
本研究利用 OpenGWAS 项目的数据,该项目包含一个大型欧洲队列,以及来自加拿大纵向老龄化研究(CLSA)的代谢物 GWAS 数据,采用了先进的统计方法。这些方法包括逆方差加权(IVW)、加权中位数估计以及使用 R 软件环境进行的全面敏感性分析,以确保因果推断的稳健性。
该研究确定了 62 种代谢物与肺纤维化有显著的因果关系,突出了风险增强和保护代谢因素。这一广泛的代谢物列表提供了潜在治疗靶点和早期检测生物标志物的广泛选择,强调了肺纤维化背后的代谢复杂性。
这项 MR 研究的结果大大提高了我们对肺纤维化代谢基础的理解,表明特定代谢物的改变可能影响疾病的风险和进展。这些见解为开发新的诊断和治疗策略铺平了道路,强调了代谢调节在管理肺纤维化方面的潜力。