文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

脑胶质瘤中的肿瘤微环境、治疗抵抗和复发。

The tumour microenvironment, treatment resistance and recurrence in glioblastoma.

机构信息

Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand.

Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.

出版信息

J Transl Med. 2024 Jun 6;22(1):540. doi: 10.1186/s12967-024-05301-9.


DOI:10.1186/s12967-024-05301-9
PMID:38844944
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11155041/
Abstract

The adaptability of glioblastoma (GBM) cells, encouraged by complex interactions with the tumour microenvironment (TME), currently renders GBM an incurable cancer. Despite intensive research, with many clinical trials, GBM patients rely on standard treatments including surgery followed by radiation and chemotherapy, which have been observed to induce a more aggressive phenotype in recurrent tumours. This failure to improve treatments is undoubtedly a result of insufficient models which fail to incorporate components of the human brain TME. Research has increasingly uncovered mechanisms of tumour-TME interactions that correlate to worsened patient prognoses, including tumour-associated astrocyte mitochondrial transfer, neuronal circuit remodelling and immunosuppression. This tumour hijacked TME is highly implicated in driving therapy resistance, with further alterations within the TME and tumour resulting from therapy exposure inducing increased tumour growth and invasion. Recent developments improving organoid models, including aspects of the TME, are paving an exciting future for the research and drug development for GBM, with the hopes of improving patient survival growing closer. This review focuses on GBMs interactions with the TME and their effect on tumour pathology and treatment efficiency, with a look at challenges GBM models face in sufficiently recapitulating this complex and highly adaptive cancer.

摘要

脑胶质瘤(GBM)细胞的适应性,加上与肿瘤微环境(TME)的复杂相互作用,目前使 GBM 成为一种无法治愈的癌症。尽管进行了大量的研究,并进行了许多临床试验,但 GBM 患者仍依赖于标准治疗,包括手术加放疗和化疗,这些治疗方法已被观察到会在复发性肿瘤中诱导更具侵袭性的表型。治疗效果没有改善,这无疑是由于缺乏能够纳入人脑 TME 成分的模型所致。研究越来越多地揭示了肿瘤-TME 相互作用的机制,这些机制与患者预后恶化相关,包括肿瘤相关星形胶质细胞线粒体转移、神经元回路重塑和免疫抑制。这种被肿瘤劫持的 TME 高度参与了耐药性的产生,治疗暴露后 TME 和肿瘤内的进一步改变导致肿瘤生长和侵袭增加。最近在改善类器官模型方面的进展,包括 TME 的各个方面,为 GBM 的研究和药物开发铺平了令人兴奋的未来,患者生存的希望越来越大。本文综述了 GBM 与 TME 的相互作用及其对肿瘤病理学和治疗效果的影响,并探讨了 GBM 模型在充分再现这种复杂且高度适应性癌症方面所面临的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50d1/11155041/1f6087c66b37/12967_2024_5301_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50d1/11155041/27abfc556b47/12967_2024_5301_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50d1/11155041/0655c92e215b/12967_2024_5301_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50d1/11155041/de91f418874c/12967_2024_5301_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50d1/11155041/c9ce1fcb4fb7/12967_2024_5301_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50d1/11155041/1f6087c66b37/12967_2024_5301_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50d1/11155041/27abfc556b47/12967_2024_5301_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50d1/11155041/0655c92e215b/12967_2024_5301_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50d1/11155041/de91f418874c/12967_2024_5301_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50d1/11155041/c9ce1fcb4fb7/12967_2024_5301_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50d1/11155041/1f6087c66b37/12967_2024_5301_Fig5_HTML.jpg

相似文献

[1]
The tumour microenvironment, treatment resistance and recurrence in glioblastoma.

J Transl Med. 2024-6-6

[2]
Applications of nanotechnology in remodeling the tumour microenvironment for glioblastoma treatment.

Biomater Sci. 2024-8-6

[3]
The Many Facets of Therapy Resistance and Tumor Recurrence in Glioblastoma.

Cells. 2021-2-24

[4]
Challenges in glioblastoma research: focus on the tumor microenvironment.

Trends Cancer. 2023-1

[5]
Identification, validation and biological characterisation of novel glioblastoma tumour microenvironment subtypes: implications for precision immunotherapy.

Ann Oncol. 2023-3

[6]
Current advances in PD-1/PD-L1 axis-related tumour-infiltrating immune cells and therapeutic regimens in glioblastoma.

Crit Rev Oncol Hematol. 2020-4-24

[7]
Integrated microenvironment-associated genomic profiles identify LRRC15 mediating recurrent glioblastoma-associated macrophages infiltration.

J Cell Mol Med. 2021-6

[8]
The Interplay between Glioblastoma and Its Microenvironment.

Cells. 2021-8-31

[9]
Unlocking the code: The role of molecular and genetic profiling in revolutionizing glioblastoma treatment.

Cancer Treat Res Commun. 2025

[10]
Personalising glioblastoma medicine: explant organoid applications, challenges and future perspectives.

Acta Neuropathol Commun. 2025-1-11

引用本文的文献

[1]
A SORT1/EGFR molecular interplay as a prognostic biomarker in glioblastoma vasculogenic mimicry: implications in the transcriptional regulation of cancer stemness and drug resistance.

BMC Cancer. 2025-8-20

[2]
Recent Advances in the Therapeutic Potential of Cannabinoids Against Gliomas: A Systematic Review (2022-2025).

Pharmacol Res Perspect. 2025-8

[3]
IGLL5 has potential to be a prognostic biomarker and its correlation with immune infiltrates in breast cancer.

Am J Clin Exp Immunol. 2025-6-15

[4]
Enhanced tumor suppression in patient-derived temozolomide-resistant glioblastoma cells using a combination treatment of Olaparib and FK866.

BMC Cancer. 2025-7-15

[5]
DNA methylation remodeling in temozolomide resistant recurrent glioblastoma: comparing epigenetic dynamics in vitro and in vivo.

J Transl Med. 2025-7-10

[6]
tRNA-Derived Small RNA Accelerates Tumorigenesis through Crosstalk with Tumor-Associated Macrophages, and Downregulation with Cell Membrane-Modified Polymer Nanoparticles Enables Treatment Response.

ACS Appl Mater Interfaces. 2025-7-23

[7]
The reprogramming impact of SMAC-mimetic on glioblastoma stem cells and the immune tumor microenvironment evolution.

J Exp Clin Cancer Res. 2025-7-4

[8]
Spatial transcriptomics and multi-omics reveal relapse and resistance mechanisms of EndMT-derived CAFs mediated by TNC and FLNC in glioblastoma.

J Transl Med. 2025-7-1

[9]
CRISPR-Cas9 screening identifies a gene signature predictive of prognosis in glioblastoma.

Sci Rep. 2025-7-1

[10]
Ultrasound-Mediated Drug Diffusion, Uptake, and Cytotoxicity in a Glioblastoma 3D Tumour Sphere Model.

Cells. 2025-6-11

本文引用的文献

[1]
The diversity and dynamics of tumor-associated macrophages in recurrent glioblastoma.

Front Immunol. 2023

[2]
Dendritic cell vaccination for glioblastoma multiforme patients: has a new milestone been reached?

Transl Cancer Res. 2023-8-31

[3]
The diversified role of mitochondria in ferroptosis in cancer.

Cell Death Dis. 2023-8-14

[4]
Translational Models in Glioma Immunotherapy Research.

Curr Oncol. 2023-6-11

[5]
Mitoepigenetics and gliomas: epigenetic alterations to mitochondrial DNA and nuclear DNA alter mtDNA expression and contribute to glioma pathogenicity.

Front Neurol. 2023-5-30

[6]
Untangling the web of glioblastoma treatment resistance using a multi-omic and multidisciplinary approach.

Am J Med Sci. 2023-9

[7]
Development of glioblastoma organoids and their applications in personalized therapy.

Cancer Biol Med. 2023-6-5

[8]
Macrophages in Recurrent Glioblastoma as a Prognostic Factor in the Synergistic System of the Tumor Microenvironment.

Neurol Int. 2023-4-23

[9]
GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity.

Nat Cancer. 2023-5

[10]
Re-convolving the compositional landscape of primary and recurrent glioblastoma reveals prognostic and targetable tissue states.

Nat Commun. 2023-5-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索