UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, School of Interdisciplinary Research and Graduate Studies, College of Graduate Studies, University of South Africa (UNISA), Johannesburg, South Africa.
Microsc Res Tech. 2024 Oct;87(10):2425-2436. doi: 10.1002/jemt.24625. Epub 2024 Jun 6.
Nanoparticles of titanium dioxide (TiO) were made by reacting graphene oxide (GO) with Lawsonia inermis leaf extract. X-ray diffraction (XRD) analysis revealed crystalline TiO doped GO nanoparticles composed of a variety of anatase phases. Initially, UV-vis spectroscopy was performed to confirm the biogenesis of TiO doped GO nanoparticles (NP's). Using SEM, the research showed that the biosynthesized TiO nanoparticles were mostly spherical, polydispersed, and of a nanoscale size. Because of the energy dispersive X-ray spectroscopy (EDS) pattern, distinct and robust peaks of titanium (Ti) and oxygen (O) were observed, which were supportive of the formation of TiO nanoparticles. By using fourier transform infrared (FTIR) spectroscopy, it was demonstrated that terpenoids, flavonoids, and proteins are involved in the biosynthesis and production of TiO doped GO nanoparticles. 2,2-diphenylpicrylhydrazyl (DPPH) assays were conducted to evaluate the free radical scavenging activity of TiO doped GO nanoparticles. Additionally, the TiO doped GO NPs had enhanced antioxidant activity when compared with the TiO matrix. A series of pure TiO and TiO doped GO nanoparticles (5, 10, 50, and 100 mg/mL) solutions were investigated for their antibacterial activities. In the current study, zebrafish embryos exposed to pure TiO and TiO doped GO nanoparticles were toxic and suffered a low survival rate based on concentration. During photocatalysis, O˙ and ˙OH radicals are rapidly produced because of the reactive species trapping experiment. It was estimated that pure TiO nanoparticles and those doped with GO were 80% effective in degrading methyl orange(MO) after 120 min, respectively. RESEARCH HIGHLIGHTS: The UV-vis absorption spectra showed a maximum absorbance peak at 290 nm. SEM, the pure TiO doped GO NPs exhibit agglomeration and spherical shape. When tested in zebrafish embryos, TiO NPs are toxic at high concentrations. GO nanoparticles showed better antioxidant activity. NPs exhibited concentration dependent antioxidative activity.
采用没食子酸铁叶提取物还原氧化石墨烯(GO)制备了二氧化钛(TiO)纳米粒子。X 射线衍射(XRD)分析表明,掺杂 GO 的 TiO 纳米粒子由多种锐钛矿相组成,呈结晶态。首先,通过紫外可见光谱(UV-vis)证实了掺杂 GO 的 TiO 纳米粒子的生物合成。通过 SEM 研究表明,生物合成的 TiO 纳米粒子大多为球形、多分散性和纳米级。由于能谱(EDS)图谱,观察到明显而强烈的钛(Ti)和氧(O)峰,这支持了 TiO 纳米粒子的形成。通过傅里叶变换红外(FTIR)光谱表明,萜类、类黄酮和蛋白质参与了 TiO 掺杂 GO 纳米粒子的生物合成和生产。使用 2,2-二苯基-1-苦肼基(DPPH)测定法评估了 TiO 掺杂 GO 纳米粒子的自由基清除活性。此外,与 TiO 基质相比,TiO 掺杂 GO NPs 具有增强的抗氧化活性。研究了一系列纯 TiO 和 TiO 掺杂 GO 纳米粒子(5、10、50 和 100 mg/mL)溶液的抗菌活性。在本研究中,暴露于纯 TiO 和 TiO 掺杂 GO 纳米粒子的斑马鱼胚胎因浓度而有毒且存活率低。在光催化过程中,由于活性物种捕获实验,迅速产生 O˙和˙OH 自由基。估计在 120 分钟后,纯 TiO 纳米粒子和掺杂 GO 的 TiO 纳米粒子分别有效地降解甲基橙(MO)达 80%。研究亮点:UV-vis 吸收光谱在 290nm 处显示出最大吸收峰。SEM 显示,纯 TiO 掺杂 GO NPs 表现出团聚和球形。在斑马鱼胚胎中进行测试时,高浓度的 TiO NPs 有毒。GO 纳米粒子表现出更好的抗氧化活性。纳米粒子表现出浓度依赖性的抗氧化活性。