Suppr超能文献

使用 3D 盆腔超声完全自动定位和测量肛提肌裂孔尺寸。

Fully Automated Localization and Measurement of Levator Hiatus Dimensions Using 3-D Pelvic Floor Ultrasound.

机构信息

Department of Ultrasound, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China.

Shenzhen RayShape Medical Technology Co., Ltd, Shenzhen, China.

出版信息

Ultrasound Med Biol. 2024 Sep;50(9):1329-1338. doi: 10.1016/j.ultrasmedbio.2024.05.005. Epub 2024 Jun 5.

Abstract

OBJECTIVE

To develop an algorithm for the automated localization and measurement of levator hiatus (LH) dimensions (AI-LH) using 3-D pelvic floor ultrasound.

METHODS

The AI-LH included a 3-D plane regression model and a 2-D segmentation model, which first achieved automated localization of the minimal LH dimension plane (C-plane) and measurement of the hiatal area (HA) on maximum Valsalva on the rendered LH images, but not on the C-plane. The dataset included 600 volumetric data. We compared AI-LH with sonographer difference (ASD) as well as the inter-sonographer differences (IESD) in the testing dataset (n = 240). The assessment encompassed the mean absolute error (MAE) for the angle and center point distance of the C-plane, along with the Dice coefficient, MAE, and intra-class correlation coefficient (ICC) for HA, and included the time consumption.

RESULTS

The MAE of the C-plane of ASD was 4.81 ± 2.47° with 1.92 ± 1.54 mm. AI-LH achieved a mean Dice coefficient of 0.93 for LH segmentation. The MAE on HA of ASD (1.44 ± 1.12 mm²) was lower than that of IESD (1.63 ± 1.58 mm²). The ICC on HA of ASD (0.964) was higher than that of IESD (0.949). The average time costs of AI-LH and manual measurement were 2.00 ± 0.22 s and 59.60 ± 2.63 s (t = 18.87, p < 0.01), respectively.

CONCLUSION

AI-LH is accurate, reliable, and robust in the localization and measurement of LH dimensions, which can shorten the time cost, simplify the operation process, and have good value in clinical applications.

摘要

目的

利用三维盆底超声开发一种用于自动定位和测量肛提肌裂孔(LH)尺寸的算法(AI-LH)。

方法

AI-LH 包括 3-D 平面回归模型和 2-D 分割模型,该模型首先在渲染的 LH 图像上实现最小 LH 尺寸平面(C 平面)的自动定位和最大 Valsalva 时裂孔面积(HA)的测量,但不在 C 平面上。数据集包括 600 个容积数据。我们在测试数据集(n=240)中比较了 AI-LH 与超声医师差异(ASD)以及超声医师间差异(IESD)。评估包括 C 平面角度和中心点距离的平均绝对误差(MAE),以及 HA 的 Dice 系数、MAE 和组内相关系数(ICC),并包括时间消耗。

结果

ASD 的 C 平面 MAE 为 4.81±2.47°,中心点距离为 1.92±1.54mm。AI-LH 对 LH 分割的平均 Dice 系数为 0.93。ASD 的 HA 上的 MAE(1.44±1.12mm²)低于 IESD(1.63±1.58mm²)。ASD 的 HA 上的 ICC(0.964)高于 IESD(0.949)。AI-LH 和手动测量的平均时间成本分别为 2.00±0.22s 和 59.60±2.63s(t=18.87,p<0.01)。

结论

AI-LH 可准确、可靠、稳健地定位和测量 LH 尺寸,可缩短时间成本,简化操作流程,在临床应用中有很好的应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验