Suppr超能文献

一种从医学影像分割中重建血管中轴线的新方法。

A novel procedure for medial axis reconstruction of vessels from Medical Imaging segmentation.

作者信息

Fontana C, Cappetti N

机构信息

Department of Industrial Engineering, University of Salerno, Fisciano, SA, 84084, Italy.

出版信息

Heliyon. 2024 May 23;10(11):e31769. doi: 10.1016/j.heliyon.2024.e31769. eCollection 2024 Jun 15.

Abstract

A procedure for reconstructing the central axis from diagnostic image processing is presented here, capable of solving the widespread problem of stepped shape effect that characterizes the most common algorithmic tools for processing the central axis for diagnostic imaging applications through the development of an algorithm correcting the spatial coordinates of each point belonging to the axis from the use of a common discrete image skeleton algorithm. The procedure is applied to the central axis traversing the vascular branch of the cerebral system, appropriately reconstructed from the processing of diagnostic images, using investigations of the local intensity values identified in adjacent voxels. The percentage intensity of the degree of adherence to a specific anatomical tissue acts as an attraction pole in the identification of the spatial center on which to place each point of the skeleton crossing the investigated anatomical structure. The results were shown in terms of the number of vessels identified overall compared to the original reference model. The procedure demonstrates high accuracy margin in the correction of the local coordinates of the central points that permits to allocate precise dimensional measurement of the anatomy under examination. The reconstruction of a central axis effectively centered in the region under examination represents a fundamental starting point in deducing, with a high margin of accuracy, key informations of a geometric and dimensional nature that favours the recognition of phenomena of shape alterations ascribable to the presence of clinical pathologies.

摘要

本文介绍了一种通过诊断图像处理重建中轴线的方法,该方法能够解决普遍存在的阶梯状形状效应问题。这种效应是大多数用于诊断成像应用的中轴线处理算法工具所具有的特征。通过开发一种算法,利用常见的离散图像骨架算法来校正属于中轴线的每个点的空间坐标,从而解决该问题。该方法应用于穿过脑系统血管分支的中轴线,通过对相邻体素中识别出的局部强度值进行研究,从中轴线穿过的诊断图像中适当重建中轴线。特定解剖组织的附着程度百分比强度在识别空间中心时起到吸引极点的作用,在该空间中心上放置穿过所研究解剖结构的骨架的每个点。结果以与原始参考模型相比总体识别出的血管数量来表示。该方法在中心点局部坐标的校正方面显示出高准确度余量,从而能够对所检查的解剖结构进行精确的尺寸测量。在检查区域有效居中的中轴线重建是在高精度推断几何和尺寸性质的关键信息方面的一个基本起点,这些信息有助于识别归因于临床病理存在的形状改变现象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/149a/11153195/0e753479c121/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验