Suppr超能文献

SEG-MAT:使用中轴线变换的3D形状分割

SEG-MAT: 3D Shape Segmentation Using Medial Axis Transform.

作者信息

Lin Cheng, Liu Lingjie, Li Changjian, Kobbelt Leif, Wang Bin, Xin Shiqing, Wang Wenping

出版信息

IEEE Trans Vis Comput Graph. 2022 Jun;28(6):2430-2444. doi: 10.1109/TVCG.2020.3032566. Epub 2022 May 2.

Abstract

Segmenting arbitrary 3D objects into constituent parts that are structurally meaningful is a fundamental problem encountered in a wide range of computer graphics applications. Existing methods for 3D shape segmentation suffer from complex geometry processing and heavy computation caused by using low-level features and fragmented segmentation results due to the lack of global consideration. We present an efficient method, called SEG-MAT, based on the medial axis transform (MAT) of the input shape. Specifically, with the rich geometrical and structural information encoded in the MAT, we are able to develop a simple and principled approach to effectively identify the various types of junctions between different parts of a 3D shape. Extensive evaluations and comparisons show that our method outperforms the state-of-the-art methods in terms of segmentation quality and is also one order of magnitude faster.

摘要

将任意三维物体分割成具有结构意义的组成部分是广泛的计算机图形应用中遇到的一个基本问题。现有的三维形状分割方法存在复杂的几何处理和因使用低级特征而导致的大量计算问题,并且由于缺乏全局考虑而产生碎片化的分割结果。我们提出了一种基于输入形状的中轴线变换(MAT)的有效方法,称为SEG-MAT。具体来说,通过中轴线变换中编码的丰富几何和结构信息,我们能够开发一种简单且有原则的方法来有效地识别三维形状不同部分之间的各种连接类型。广泛的评估和比较表明,我们的方法在分割质量方面优于现有方法,并且速度快一个数量级。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验