Cheng Ka-Hei, Li Wen, Lee Francis Kar-Ho, Li Tian, Cai Jing
Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
Cancers (Basel). 2024 Feb 29;16(5):999. doi: 10.3390/cancers16050999.
: The development of advanced computational models for medical imaging is crucial for improving diagnostic accuracy in healthcare. This paper introduces a novel approach for virtual contrast enhancement (VCE) in magnetic resonance imaging (MRI), particularly focusing on nasopharyngeal cancer (NPC). : The proposed model, Pixelwise Gradient Model with GAN for Virtual Contrast Enhancement (PGMGVCE), makes use of pixelwise gradient methods with Generative Adversarial Networks (GANs) to enhance T1-weighted (T1-w) and T2-weighted (T2-w) MRI images. This approach combines the benefits of both modalities to simulate the effects of gadolinium-based contrast agents, thereby reducing associated risks. Various modifications of PGMGVCE, including changing hyperparameters, using normalization methods (z-score, Sigmoid and Tanh) and training the model with T1-w or T2-w images only, were tested to optimize the model's performance. : PGMGVCE demonstrated a similar accuracy to the existing model in terms of mean absolute error (MAE) (8.56 ± 0.45 for Li's model; 8.72 ± 0.48 for PGMGVCE), mean square error (MSE) (12.43 ± 0.67 for Li's model; 12.81 ± 0.73 for PGMGVCE) and structural similarity index (SSIM) (0.71 ± 0.08 for Li's model; 0.73 ± 0.12 for PGMGVCE). However, it showed improvements in texture representation, as indicated by total mean square variation per mean intensity (TMSVPMI) (0.124 ± 0.022 for ground truth; 0.079 ± 0.024 for Li's model; 0.120 ± 0.027 for PGMGVCE), total absolute variation per mean intensity (TAVPMI) (0.159 ± 0.031 for ground truth; 0.100 ± 0.032 for Li's model; 0.153 ± 0.029 for PGMGVCE), Tenengrad function per mean intensity (TFPMI) (1.222 ± 0.241 for ground truth; 0.981 ± 0.213 for Li's model; 1.194 ± 0.223 for PGMGVCE) and variance function per mean intensity (VFPMI) (0.0811 ± 0.005 for ground truth; 0.0667 ± 0.006 for Li's model; 0.0761 ± 0.006 for PGMGVCE). : PGMGVCE presents an innovative and safe approach to VCE in MRI, demonstrating the power of deep learning in enhancing medical imaging. This model paves the way for more accurate and risk-free diagnostic tools in medical imaging.
先进的医学成像计算模型的开发对于提高医疗保健中的诊断准确性至关重要。本文介绍了一种磁共振成像(MRI)中虚拟对比度增强(VCE)的新方法,尤其聚焦于鼻咽癌(NPC)。所提出的模型,即用于虚拟对比度增强的带生成对抗网络(GAN)的逐像素梯度模型(PGMGVCE),利用逐像素梯度方法和生成对抗网络(GAN)来增强T1加权(T1-w)和T2加权(T2-w)MRI图像。这种方法结合了两种模态的优点来模拟基于钆的造影剂的效果,从而降低相关风险。对PGMGVCE进行了各种修改,包括改变超参数、使用归一化方法(z分数、Sigmoid和Tanh)以及仅用T1-w或T2-w图像训练模型,以优化模型性能。PGMGVCE在平均绝对误差(MAE)方面(Li模型为8.56±0.45;PGMGVCE为8.72±0.48)、均方误差(MSE)方面(Li模型为12.43±0.67;PGMGVCE为12.81±0.73)和结构相似性指数(SSIM)方面(Li模型为0.71±0.08;PGMGVCE为0.73±0.12)表现出与现有模型相似的准确性。然而,它在纹理表示方面有所改进,如平均强度的总均方变化(TMSVPMI)(真实值为0.124±0.022;Li模型为0.079±0.024;PGMGVCE为0.120±0.027)、平均强度的总绝对变化(TAVPMI)(真实值为0.159±0.031;Li模型为0.100±0.032;PGMGVCE为0.153±0.029)、平均强度的Tenengrad函数(TFPMI)(真实值为1.222±0.241;Li模型为0.981±0.213;PGMGVCE为1.194±0.223)和平均强度的方差函数(VFPMI)(真实值为0.0811±0.005;Li模型为0.0667±0.006;PGMGVCE为0.0761±0.006)所示。PGMGVCE为MRI中的VCE提供了一种创新且安全的方法,展示了深度学习在增强医学成像方面的力量。该模型为医学成像中更准确且无风险的诊断工具铺平了道路。