Suppr超能文献

推导不同生物群落初级生产力和生态系统呼吸通量的方法学进展。

Methodological advancement in deriving primary productivity and ecosystem respiration fluxes across different biomes.

作者信息

Ravi Aparnna, Pillai Dhanyalekshmi, Thilakan Vishnu, Mathew Thara Anna

机构信息

Indian Institute of Science Education and Research Bhopal (IISERB), India.

Max Planck Partner Group at IISERB, Bhopal, India.

出版信息

MethodsX. 2024 May 21;12:102773. doi: 10.1016/j.mex.2024.102773. eCollection 2024 Jun.

Abstract

In this paper, we introduce a methodology that can improve the estimations of Gross Primary Productivity (GPP) and ecosystem Respiration (R) processes at a regional scale. This method is based on a satellite data-driven approach which is suitable for regions like India where there exists a serious shortage of ground-based observations of biospheric carbon fluxes (e.g., Eddy Covariance (EC) flux measurements). We relied on the Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance for capturing vegetation dynamics in the Light-Use Efficiency (LUE)-based vegetation model. Further, we utilised recently available satellite-based Solar-Induced Fluorescence (SIF) and other variables such as Soil Moisture (SM) and Soil Temperature (ST) to refine the predictions of GPP and R. The methodology involves establishing a relationship between SIF and GPP for different vegetation classes over India. The SIF-GPP relationship established across the biomes was then used to correct the GPP fluxes simulated by the LUE-based model. Similarly, the ecosystem respiration estimations by the model have undergone refinement by incorporating ST and SM information. This innovative method shows remarkable potential to improve biospheric CO uptake and release, especially for in situ data-constrained regions like India. • SIF-based information is introduced to a light-use efficiency-based vegetation model. • SIF-GPP relationship is established for major biomes across India. • SM and ST information is incorporated into the R simulations in the model.

摘要

在本文中,我们介绍了一种方法,该方法可以在区域尺度上改进对总初级生产力(GPP)和生态系统呼吸(R)过程的估算。此方法基于卫星数据驱动方法,适用于像印度这样地面生物碳通量观测(例如涡度协方差(EC)通量测量)严重短缺的地区。我们依靠中分辨率成像光谱仪(MODIS)反射率来捕捉基于光能利用效率(LUE)的植被模型中的植被动态。此外,我们利用最近可用的基于卫星的太阳诱导荧光(SIF)以及其他变量,如土壤湿度(SM)和土壤温度(ST),来优化GPP和R的预测。该方法包括在印度不同植被类别上建立SIF与GPP之间的关系。然后,利用跨生物群落建立的SIF - GPP关系来校正基于LUE模型模拟的GPP通量。同样,通过纳入ST和SM信息,对模型的生态系统呼吸估算进行了优化。这种创新方法在改进生物圈CO吸收和释放方面显示出巨大潜力,特别是对于像印度这样原位数据受限的地区。

• 将基于SIF的信息引入基于光能利用效率的植被模型。

• 在印度主要生物群落中建立SIF - GPP关系。

• 将SM和ST信息纳入模型中的R模拟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ba6/11154699/8c251902b8dd/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验