Suppr超能文献

亚马逊塔台观测站的 CO 记录:研究季节性和年际尺度过程的新机会。

The CO record at the Amazon Tall Tower Observatory: A new opportunity to study processes on seasonal and inter-annual scales.

机构信息

Biogeochemical Signals Department, Max Planck Institute for Biogeochemistry, Jena, Germany.

Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany.

出版信息

Glob Chang Biol. 2022 Jan;28(2):588-611. doi: 10.1111/gcb.15905. Epub 2021 Oct 26.

Abstract

High-quality atmospheric CO  measurements are sparse in Amazonia, but can provide critical insights into the spatial and temporal variability of sources and sinks of CO . In this study, we present the first 6 years (2014-2019) of continuous, high-precision measurements of atmospheric CO at the Amazon Tall Tower Observatory (ATTO, 2.1°S, 58.9°W). After subtracting the simulated background concentrations from our observational record, we define a CO regional signal ( ) that has a marked seasonal cycle with an amplitude of about 4 ppm. At both seasonal and inter-annual scales, we find differences in phase between and the local eddy covariance net ecosystem exchange (EC-NEE), which is interpreted as an indicator of a decoupling between local and non-local drivers of . In addition, we present how the 2015-2016 El Niño-induced drought was captured by our atmospheric record as a positive 2σ anomaly in both the wet and dry season of 2016. Furthermore, we analyzed the observed seasonal cycle and inter-annual variability of together with net ecosystem exchange (NEE) using a suite of modeled flux products representing biospheric and aquatic CO exchange. We use both non-optimized and optimized (i.e., resulting from atmospheric inverse modeling) NEE fluxes as input in an atmospheric transport model (STILT). The observed shape and amplitude of the seasonal cycle was captured neither by the simulations using the optimized fluxes nor by those using the diagnostic Vegetation and Photosynthesis Respiration Model (VPRM). We show that including the contribution of CO from river evasion improves the simulated shape (not the magnitude) of the seasonal cycle when using a data-driven non-optimized NEE product (FLUXCOM). The simulated contribution from river evasion was found to be 25% of the seasonal cycle amplitude. Our study demonstrates the importance of the ATTO record to better understand the Amazon carbon cycle at various spatial and temporal scales.

摘要

高质量的大气 CO 测量在亚马逊地区很稀疏,但可以提供有关 CO 源和汇的空间和时间变化的关键见解。在这项研究中,我们展示了在亚马逊塔观测站(ATTO,2.1°S,58.9°W)进行的首次 6 年(2014-2019 年)连续、高精度的大气 CO 测量。在从观测记录中减去模拟的背景浓度后,我们定义了一个具有约 4ppm 振幅的 CO 区域信号( ),该信号具有明显的季节性周期。在季节性和年际尺度上,我们发现 与局部涡度协方差净生态系统交换(EC-NEE)之间存在相位差异,这被解释为局部和非局部驱动因素之间解耦的指示。此外,我们展示了 2015-2016 年厄尔尼诺引发的干旱如何被我们的大气记录捕捉到,在 2016 年的湿季和干季都出现了 2σ的正异常。此外,我们使用一系列代表生物圈和水生 CO 交换的模型通量产品来分析观测到的 季节性周期和年际变化以及净生态系统交换(NEE)。我们将非优化和优化(即,来自大气逆模式)的 NEE 通量都用作大气传输模型(STILT)的输入。观察到的季节性周期的形状和幅度既没有通过使用优化通量的模拟来捕获,也没有通过使用诊断植被和光合作用呼吸模型(VPRM)的模拟来捕获。我们表明,当使用数据驱动的非优化 NEE 产品(FLUXCOM)时,包括河流逸出的 CO 贡献可以改善季节性周期的模拟形状(而不是幅度)。发现河流逸出的模拟贡献占季节性周期幅度的 25%。我们的研究表明,ATTO 记录对于在各种空间和时间尺度上更好地了解亚马逊碳循环非常重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验