School of Public Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
McMaster University, Peter Boris Centre for Addictions Research, Hamilton, Canada.
Soc Psychiatry Psychiatr Epidemiol. 2024 Nov;59(11):2063-2071. doi: 10.1007/s00127-024-02695-1. Epub 2024 Jun 7.
Adolescent depression is a significant public health concern, and studying its multifaceted factors using traditional methods possess challenges. This study employs random forest (RF) algorithms to determine factors predicting adolescent depression scores.
This study utilized self-reported survey data from 56,008 Canadian students (grades 7-12) attending 182 schools during the 2021/22 academic year. RF algorithms were applied to identify the correlates of (i) depression scores (CESD-R-10) and (ii) presence of clinically relevant depression (CESD-R-10 ≥ 10).
RF achieved a 71% explained variance, accurately predicting depression scores within a 3.40 unit margin. The top 10 correlates identified by RF included other measures of mental health (anxiety symptoms, flourishing, emotional dysregulation), home life (excessive parental expectations, happy home life, ability to talk to family), school connectedness, sleep duration, and gender. In predicting clinically relevant depression, the algorithm showed 84% accuracy, 0.89 sensitivity, and 0.79 AUROC, aligning closely with the correlates identified for depression score.
This study highlights RF's utility in identifying important correlates of adolescent depressive symptoms. RF's natural hierarchy offers an advantage over traditional methods. The findings underscore the importance and additional potential of sleep health promotion and school belonging initiatives in preventing adolescent depression.
青少年抑郁是一个重大的公共卫生问题,使用传统方法研究其多方面的因素存在挑战。本研究采用随机森林(RF)算法来确定预测青少年抑郁评分的因素。
本研究使用了 2021/22 学年期间在 182 所学校就读的 56008 名加拿大学生(7-12 年级)的自我报告调查数据。RF 算法用于确定(i)抑郁评分(CESD-R-10)和(ii)存在临床相关抑郁(CESD-R-10≥10)的相关因素。
RF 实现了 71%的解释方差,准确预测了抑郁评分在 3.40 个单位范围内的变化。RF 确定的前 10 个相关因素包括其他心理健康指标(焦虑症状、繁荣、情绪失调)、家庭生活(父母过高的期望、幸福的家庭生活、与家人交谈的能力)、学校联系、睡眠时长和性别。在预测临床相关抑郁方面,该算法的准确率为 84%,敏感度为 0.89,AUROC 为 0.79,与抑郁评分的相关因素高度一致。
本研究强调了 RF 在识别青少年抑郁症状重要相关因素方面的效用。RF 的自然层次结构提供了传统方法所不具备的优势。研究结果强调了促进睡眠健康和学校归属感倡议在预防青少年抑郁方面的重要性和额外潜力。