Suppr超能文献

使用机器学习算法预测韩国社区居住成年人未来抑郁症的发病情况。

Predicting future onset of depression among community dwelling adults in the Republic of Korea using a machine learning algorithm.

作者信息

Na Kyoung-Sae, Cho Seo-Eun, Geem Zong Woo, Kim Yong-Ku

机构信息

Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Incheon, Republic of Korea.

Department of Energy and Information Technology, Gachon University, Seongnam-si, Republic of Korea.

出版信息

Neurosci Lett. 2020 Mar 16;721:134804. doi: 10.1016/j.neulet.2020.134804. Epub 2020 Jan 31.

Abstract

Because depression has high prevalence and cause enduring disability, it is important to predict onset of depression among community dwelling adults. In this study, we aimed to build a machine learning-based predictive model for future onset of depression. We used nationwide survey data to construct training and hold-out test set. The class imbalance was dealt with the Synthetic Minority Over-sampling Technique. A tree-based ensemble method, random forest, was used to build a predictive model. Depression was defined by 9 or more on the Center for Epidemiologic Studies - Depression Scale 11 items version. Hyperparameters were tuned throughout the 10-fold cross-validation. A total of 6,588 (6,067 of non-depression and 521 of depression) participants were included in the study. The area under receiver operating characteristics curve was 0.870. The overall accuracy, sensitivity, and specificity were 0.862, 0.730, and 0.866, respectively. Satisfactions for leisure, familial relationship, general, social relationship, and familial income had importance in building predictive model for the onset of future depression. Our study demonstrated that predicting future onset of depression by using survey data could be possible. This predictive model is expected to be used for early identification of individuals at risk for depression and secure time to intervention.

摘要

由于抑郁症患病率高且会导致长期残疾,预测社区居住成年人抑郁症的发病情况很重要。在本研究中,我们旨在构建一个基于机器学习的抑郁症未来发病预测模型。我们使用全国性调查数据构建训练集和验证集。采用合成少数过采样技术处理类别不平衡问题。使用基于树的集成方法——随机森林来构建预测模型。抑郁症由流行病学研究中心抑郁量表11项版本中9分及以上来定义。在10折交叉验证过程中调整超参数。共有6588名参与者纳入研究(6067名非抑郁症患者和521名抑郁症患者)。受试者工作特征曲线下面积为0.870。总体准确率、敏感性和特异性分别为0.862、0.730和0.866。休闲、家庭关系、总体、社会关系和家庭收入满意度在构建未来抑郁症发病预测模型中具有重要意义。我们的研究表明,利用调查数据预测未来抑郁症发病是可行的。该预测模型有望用于早期识别抑郁症高危个体并争取干预时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验