Suppr超能文献

利用日常可穿戴设备获取的生理数据进行抑郁症识别。

Depression Recognition Using Daily Wearable-Derived Physiological Data.

作者信息

Shui Xinyu, Xu Hao, Tan Shuping, Zhang Dan

机构信息

Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing 100084, China.

Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China.

出版信息

Sensors (Basel). 2025 Jan 19;25(2):567. doi: 10.3390/s25020567.

Abstract

The objective identification of depression using physiological data has emerged as a significant research focus within the field of psychiatry. The advancement of wearable physiological measurement devices has opened new avenues for the identification of individuals with depression in everyday-life contexts. Compared to other objective measurement methods, wearables offer the potential for continuous, unobtrusive monitoring, which can capture subtle physiological changes indicative of depressive states. The present study leverages multimodal wristband devices to collect data from fifty-eight participants clinically diagnosed with depression during their normal daytime activities over six hours. Data collected include pulse wave, skin conductance, and triaxial acceleration. For comparison, we also utilized data from fifty-eight matched healthy controls from a publicly available dataset, collected using the same devices over equivalent durations. Our aim was to identify depressive individuals through the analysis of multimodal physiological measurements derived from wearable devices in daily life scenarios. We extracted static features such as the mean, variance, skewness, and kurtosis of physiological indicators like heart rate, skin conductance, and acceleration, as well as autoregressive coefficients of these signals reflecting the temporal dynamics. Utilizing a Random Forest algorithm, we distinguished depressive and non-depressive individuals with varying classification accuracies on data aggregated over 6 h, 2 h, 30 min, and 5 min segments, as 90.0%, 84.7%, 80.1%, and 76.0%, respectively. Our results demonstrate the feasibility of using daily wearable-derived physiological data for depression recognition. The achieved classification accuracies suggest that this approach could be integrated into clinical settings for the early detection and monitoring of depressive symptoms. Future work will explore the potential of these methods for personalized interventions and real-time monitoring, offering a promising avenue for enhancing mental health care through the integration of wearable technology.

摘要

利用生理数据客观识别抑郁症已成为精神病学领域的一个重要研究重点。可穿戴式生理测量设备的发展为在日常生活环境中识别抑郁症患者开辟了新途径。与其他客观测量方法相比,可穿戴设备具有持续、不干扰监测的潜力,能够捕捉到表明抑郁状态的细微生理变化。本研究利用多模态腕带设备,在正常白天活动的6小时内,从58名临床诊断为抑郁症的参与者身上收集数据。收集的数据包括脉搏波、皮肤电导率和三轴加速度。为作比较,我们还使用了来自一个公开数据集的58名匹配健康对照的数据,这些数据是使用相同设备在相同时间段内收集的。我们的目的是通过分析日常生活场景中可穿戴设备获取的多模态生理测量数据来识别抑郁症患者。我们提取了诸如心率、皮肤电导率和加速度等生理指标的均值、方差、偏度和峰度等静态特征,以及反映时间动态的这些信号的自回归系数。利用随机森林算法,我们在6小时、2小时、30分钟和5分钟时间段汇总的数据上,以不同的分类准确率区分了抑郁症患者和非抑郁症患者,分别为90.0%、84.7%、80.1%和76.0%。我们的结果证明了使用日常可穿戴设备获取的生理数据进行抑郁症识别的可行性。所取得的分类准确率表明,这种方法可以整合到临床环境中,用于抑郁症症状的早期检测和监测。未来的工作将探索这些方法在个性化干预和实时监测方面的潜力,为通过整合可穿戴技术加强心理健康护理提供一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f8a/11768625/22147d35759b/sensors-25-00567-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验