Suppr超能文献

建立包含密度依赖的细胞死亡和感染复数的急性 HIV 感染动力学模型。

Modeling dynamics of acute HIV infection incorporating density-dependent cell death and multiplicity of infection.

机构信息

Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America.

Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.

出版信息

PLoS Comput Biol. 2024 Jun 7;20(6):e1012129. doi: 10.1371/journal.pcbi.1012129. eCollection 2024 Jun.

Abstract

Understanding the dynamics of acute HIV infection can offer valuable insights into the early stages of viral behavior, potentially helping uncover various aspects of HIV pathogenesis. The standard viral dynamics model explains HIV viral dynamics during acute infection reasonably well. However, the model makes simplifying assumptions, neglecting some aspects of HIV infection. For instance, in the standard model, target cells are infected by a single HIV virion. Yet, cellular multiplicity of infection (MOI) may have considerable effects in pathogenesis and viral evolution. Further, when using the standard model, we take constant infected cell death rates, simplifying the dynamic immune responses. Here, we use four models-1) the standard viral dynamics model, 2) an alternate model incorporating cellular MOI, 3) a model assuming density-dependent death rate of infected cells and 4) a model combining (2) and (3)-to investigate acute infection dynamics in 43 people living with HIV very early after HIV exposure. We find that all models qualitatively describe the data, but none of the tested models is by itself the best to capture different kinds of heterogeneity. Instead, different models describe differing features of the dynamics more accurately. For example, while the standard viral dynamics model may be the most parsimonious across study participants by the corrected Akaike Information Criterion (AICc), we find that viral peaks are better explained by a model allowing for cellular MOI, using a linear regression analysis as analyzed by R2. These results suggest that heterogeneity in within-host viral dynamics cannot be captured by a single model. Depending on the specific aspect of interest, a corresponding model should be employed.

摘要

了解急性 HIV 感染的动力学可以为病毒行为的早期阶段提供有价值的见解,有助于揭示 HIV 发病机制的各个方面。标准病毒动力学模型可以很好地解释急性感染期间的 HIV 病毒动力学。然而,该模型做出了简化假设,忽略了 HIV 感染的一些方面。例如,在标准模型中,靶细胞被单个 HIV 病毒粒子感染。然而,细胞感染的多重性(MOI)可能对发病机制和病毒进化有相当大的影响。此外,在使用标准模型时,我们采用恒定的受感染细胞死亡率,简化动态免疫反应。在这里,我们使用四个模型——1)标准病毒动力学模型,2)纳入细胞 MOI 的替代模型,3)假设受感染细胞死亡率与密度相关的模型,4)结合模型 2 和模型 3 的模型——来研究 43 名 HIV 感染者在 HIV 暴露后非常早期的急性感染动力学。我们发现所有模型都定性地描述了数据,但没有一个测试模型本身能够最好地捕捉不同类型的异质性。相反,不同的模型更准确地描述了动力学的不同特征。例如,虽然标准病毒动力学模型通过校正的 Akaike 信息准则(AICc)对研究参与者来说可能是最简约的,但我们发现,通过线性回归分析,允许细胞 MOI 的模型可以更好地解释病毒峰值,使用 R2 进行分析。这些结果表明,宿主内病毒动力学的异质性不能用单个模型来捕捉。根据具体的研究兴趣,应该采用相应的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f59/11189221/2dfe24c47413/pcbi.1012129.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验