Suppr超能文献

对三种队列中七种不同的 EAT-Lancet 参考饮食评分与死亡率、卒中及温室气体排放的系统评价。

A systematic evaluation of seven different scores representing the EAT-Lancet reference diet and mortality, stroke, and greenhouse gas emissions in three cohorts.

机构信息

Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.

CONAHCyT-Center for Population Health Research, National Institute of Public Health, Avenida Universidad 655, Cuernavaca, Mexico.

出版信息

Lancet Planet Health. 2024 Jun;8(6):e391-e401. doi: 10.1016/S2542-5196(24)00094-9.

Abstract

Different approaches have been used for translation of the EAT-Lancet reference diet into dietary scores that can be used to assess health and environmental impact. Our aim was to compare the different EAT-Lancet diet scores, and to estimate their associations with all-cause mortality, stroke incidence, and greenhouse gas emissions. We did a systematic review (PROSPERO, CRD42021286597) to identify different scores representing adherence to the EAT-Lancet reference diet. We then qualitatively compared the diet adherence scores, including their ability to group individuals according the EAT-Lancet reference diet recommendations, and quantitatively assessed the associations of the diet scores with health and environmental outcome data in three diverse cohorts: the Danish Diet, Cancer and Health Cohort (DCH; n=52 452), the Swedish Malmö Diet and Cancer Cohort (MDC; n=20 973), and the Mexican Teachers' Cohort (MTC; n=30 151). The DCH and MTC used food frequency questionnaires and the MDC used a modified diet history method to assess dietary intake, which we used to compute EAT-Lancet diet scores and evaluate the associations of scores with hazard of all-cause mortality and stroke. In the MDC, dietary greenhouse gas emission values were summarised for every participant, which we used to predict greenhouse gas emissions associated with varying diet adherence scores on each scoring system. In our review, seven diet scores were identified (Knuppel et al, 2019; Trijsburg et al, 2020; Cacau et al, 2021; Hanley-Cook et al, 2021; Kesse-Guyot et al, 2021; Stubbendorff et al, 2022; and Colizzi et al, 2023). Two of the seven scores (Stubbendorff and Colizzi) were among the most consistent in grouping participants according to the EAT-Lancet reference diet recommendations across cohorts, and higher scores (greater diet adherence) were associated with decreased risk of mortality (in the DCH and MDC), decreased risk of incident stroke (in the DCH and MDC for the Stubbendorff score; and in the DCH for the Colizzi score), and decreased predicted greenhouse gas emissions in the MDC. We conclude that the seven different scores representing the EAT-Lancet reference diet had differences in construction, interpretation, and relation to disease and climate-related outcomes. Two scores generally performed well in our evaluation. Future studies should carefully consider which diet score to use and preferably use multiple scores to assess the robustness of estimations, given that public health and environmental policy rely on these estimates.

摘要

不同的方法被用于将 EAT-Lancet 参考饮食转化为饮食评分,以便评估健康和环境影响。我们的目的是比较不同的 EAT-Lancet 饮食评分,并估计它们与全因死亡率、中风发病率和温室气体排放之间的关系。我们进行了一项系统评价(PROSPERO,CRD42021286597),以确定代表对 EAT-Lancet 参考饮食的依从性的不同评分。然后,我们对饮食依从性评分进行了定性比较,包括根据 EAT-Lancet 参考饮食建议对个体进行分组的能力,并在三个不同的队列中定量评估了饮食评分与健康和环境结局数据的关系:丹麦饮食、癌症和健康队列(DCH;n=52452)、瑞典马尔默饮食和癌症队列(MDC;n=20973)和墨西哥教师队列(MTC;n=30151)。DCH 和 MTC 使用食物频率问卷,而 MDC 使用改良饮食史方法来评估饮食摄入,我们使用这些数据来计算 EAT-Lancet 饮食评分,并评估评分与全因死亡率和中风风险的关系。在 MDC 中,为每个参与者总结了饮食温室气体排放值,我们使用这些值来预测每个评分系统中不同饮食依从性评分与温室气体排放的关联。在我们的综述中,确定了七种饮食评分(Knuppel 等人,2019 年;Trijsburg 等人,2020 年;Cacau 等人,2021 年;Hanley-Cook 等人,2021 年;Kesse-Guyot 等人,2021 年;Stubbendorff 等人,2022 年;和 Colizzi 等人,2023 年)。在分组参与者时,七个评分中的两个(Stubbendorff 和 Colizzi)最符合 EAT-Lancet 参考饮食建议,且较高的评分(更高的饮食依从性)与较低的死亡率风险(在 DCH 和 MDC 中)、较低的中风发病率风险(在 DCH 和 MDC 中,与 Stubbendorff 评分相关;在 DCH 中,与 Colizzi 评分相关)和较低的预测温室气体排放量(在 MDC 中)相关。我们得出结论,代表 EAT-Lancet 参考饮食的七种不同评分在构建、解释和与疾病和气候相关结果的关系方面存在差异。两个评分在我们的评估中表现良好。未来的研究应仔细考虑使用哪种饮食评分,并最好使用多种评分来评估估计的稳健性,因为公共卫生和环境政策依赖于这些估计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验