Wang Jianhong, Wu Hanglong, Zhu Xiaowei, Zwolsman Robby, Hofstraat Stijn R J, Li Yudong, Luo Yingtong, Joosten Rick R M, Friedrich Heiner, Cao Shoupeng, Abdelmohsen Loai K E A, Shao Jingxin, van Hest Jan C M
Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China.
Nat Commun. 2024 Jun 7;15(1):4878. doi: 10.1038/s41467-024-49217-w.
Synthetic micro/nanomotors have been extensively exploited over the past decade to achieve active transportation. This interest is a result of their broad range of potential applications, from environmental remediation to nanomedicine. Nevertheless, it still remains a challenge to build a fast-moving biodegradable polymeric nanomotor. Here we present a light-propelled nanomotor by introducing gold nanoparticles (Au NP) onto biodegradable bowl-shaped polymersomes (stomatocytes) via electrostatic and hydrogen bond interactions. These biodegradable nanomotors show controllable motion and remarkable velocities of up to 125 μm s. This unique behavior is explained via a thorough three-dimensional characterization of the nanomotor, particularly the size and the spatial distribution of Au NP, with cryogenic transmission electron microscopy (cryo-TEM) and cryo-electron tomography (cryo-ET). Our in-depth quantitative 3D analysis reveals that the motile features of these nanomotors are caused by the nonuniform distribution of Au NPs on the outer surface of the stomatocyte along the z-axial direction. Their excellent motile features are exploited for active cargo delivery into living cells. This study provides a new approach to develop robust, biodegradable soft nanomotors with application potential in biomedicine.
在过去十年中,合成微纳马达已被广泛用于实现主动运输。这种兴趣源于它们广泛的潜在应用,从环境修复到纳米医学。然而,构建快速移动的可生物降解聚合物纳米马达仍然是一个挑战。在这里,我们通过静电和氢键相互作用将金纳米颗粒(Au NP)引入可生物降解的碗状聚合物囊泡(红细胞影),从而展示了一种光驱动的纳米马达。这些可生物降解的纳米马达表现出可控的运动,速度高达125μm/s。通过低温透射电子显微镜(cryo-TEM)和低温电子断层扫描(cryo-ET)对纳米马达进行全面的三维表征,特别是Au NP的尺寸和空间分布,解释了这种独特的行为。我们深入的定量三维分析表明,这些纳米马达的运动特征是由Au NPs在红细胞影外表面沿z轴方向的不均匀分布引起的。它们出色的运动特征被用于将活性货物输送到活细胞中。这项研究为开发具有生物医学应用潜力的强大、可生物降解的软纳米马达提供了一种新方法。