Suppr超能文献

超快光激活聚合物纳米马达。

Ultrafast light-activated polymeric nanomotors.

作者信息

Wang Jianhong, Wu Hanglong, Zhu Xiaowei, Zwolsman Robby, Hofstraat Stijn R J, Li Yudong, Luo Yingtong, Joosten Rick R M, Friedrich Heiner, Cao Shoupeng, Abdelmohsen Loai K E A, Shao Jingxin, van Hest Jan C M

机构信息

Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.

School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China.

出版信息

Nat Commun. 2024 Jun 7;15(1):4878. doi: 10.1038/s41467-024-49217-w.

Abstract

Synthetic micro/nanomotors have been extensively exploited over the past decade to achieve active transportation. This interest is a result of their broad range of potential applications, from environmental remediation to nanomedicine. Nevertheless, it still remains a challenge to build a fast-moving biodegradable polymeric nanomotor. Here we present a light-propelled nanomotor by introducing gold nanoparticles (Au NP) onto biodegradable bowl-shaped polymersomes (stomatocytes) via electrostatic and hydrogen bond interactions. These biodegradable nanomotors show controllable motion and remarkable velocities of up to 125 μm s. This unique behavior is explained via a thorough three-dimensional characterization of the nanomotor, particularly the size and the spatial distribution of Au NP, with cryogenic transmission electron microscopy (cryo-TEM) and cryo-electron tomography (cryo-ET). Our in-depth quantitative 3D analysis reveals that the motile features of these nanomotors are caused by the nonuniform distribution of Au NPs on the outer surface of the stomatocyte along the z-axial direction. Their excellent motile features are exploited for active cargo delivery into living cells. This study provides a new approach to develop robust, biodegradable soft nanomotors with application potential in biomedicine.

摘要

在过去十年中,合成微纳马达已被广泛用于实现主动运输。这种兴趣源于它们广泛的潜在应用,从环境修复到纳米医学。然而,构建快速移动的可生物降解聚合物纳米马达仍然是一个挑战。在这里,我们通过静电和氢键相互作用将金纳米颗粒(Au NP)引入可生物降解的碗状聚合物囊泡(红细胞影),从而展示了一种光驱动的纳米马达。这些可生物降解的纳米马达表现出可控的运动,速度高达125μm/s。通过低温透射电子显微镜(cryo-TEM)和低温电子断层扫描(cryo-ET)对纳米马达进行全面的三维表征,特别是Au NP的尺寸和空间分布,解释了这种独特的行为。我们深入的定量三维分析表明,这些纳米马达的运动特征是由Au NPs在红细胞影外表面沿z轴方向的不均匀分布引起的。它们出色的运动特征被用于将活性货物输送到活细胞中。这项研究为开发具有生物医学应用潜力的强大、可生物降解的软纳米马达提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3a1/11161643/a145f80dfec6/41467_2024_49217_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验