The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsted Plads, Kgs. Lyngby, 2800, Denmark.
Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
Adv Healthc Mater. 2023 May;12(13):e2203018. doi: 10.1002/adhm.202203018. Epub 2023 Feb 16.
Bacterial biofilms are linked to several diseases and cause resistant and chronic infections in immune-compromised patients. Nanomotors comprise a new field of research showing a great promise within biomedicine but pose challenges in terms of biocompatibility. Nanomotors propelled by thermophoresis could overcome this challenge, as they leave no waste product during propulsion. In this study, mesoporous-silica nanoparticles are coated with a thin layer of gold to make nanomotors, which can be driven by near-infrared (NIR) light irradiation. The prepared mesoporous SiO -Au nanomotors exhibit efficient self-propulsion when exposed to NIR irradiation, they penetrate deep through a biofilm matrix, and disperse the biofilm in situ due to the photothermal effect on the Au part of the nanomotors. The velocities of such nanomotors are investigated at different wavelengths and laser powers. Furthermore, the study examines the ability of these nanomotors to eradicate Pseudomonas aeruginosa (P. aeruginosa) biofilm under NIR light irradiation. The conducted study shows that the nanomotor's velocity increases with increasing laser power. The mesoporous SiO /Au nanomotors show excellent capabilities to eradicate P. aeruginosa biofilms even under short (30 s-3 min) irradiation time. This study shows great promise for overcoming the challenges related to bacterial biofilm eradication.
细菌生物膜与多种疾病有关,并导致免疫功能低下的患者产生耐药性和慢性感染。纳米马达是一个新的研究领域,在生物医学领域显示出巨大的应用前景,但在生物相容性方面存在挑战。基于热泳的纳米马达可以克服这一挑战,因为它们在推进过程中不会产生废物。在这项研究中,介孔硅纳米粒子被涂覆了一层很薄的金,制成纳米马达,然后可以用近红外(NIR)光照射来驱动。当暴露于近红外光照射时,所制备的介孔 SiO2-Au 纳米马达表现出高效的自推进,由于纳米马达的 Au 部分的光热效应,它们可以穿透生物膜基质并在原位分散生物膜。研究人员在不同波长和激光功率下研究了这些纳米马达的速度。此外,该研究还考察了这些纳米马达在近红外光照射下消除铜绿假单胞菌(P. aeruginosa)生物膜的能力。研究表明,纳米马达的速度随着激光功率的增加而增加。介孔 SiO2/Au 纳米马达甚至在短时间(30 秒至 3 分钟)的照射下,也表现出了极好的消除铜绿假单胞菌生物膜的能力。这项研究为克服与细菌生物膜消除相关的挑战提供了巨大的希望。