文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

数字孪生:重塑心血管疾病风险预测与个性化医疗的未来

Digital twins: reimagining the future of cardiovascular risk prediction and personalised care.

作者信息

Dziopa Katarzyna, Lekadir Karim, van der Harst Pim, Asselbergs Folkert W

机构信息

Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands; Institute of Health Informatics, University College London, London, United Kingdom; Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom.

Universitat de Barcelona, Artificial Intelligence in Medicine Lab (BCN-AIM), Department of Mathematics and Computer Science, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain.

出版信息

Hellenic J Cardiol. 2025 Jan-Feb;81:4-8. doi: 10.1016/j.hjc.2024.06.001. Epub 2024 Jun 7.


DOI:10.1016/j.hjc.2024.06.001
PMID:38852883
Abstract

The rapid evolution of highly adaptable and reusable artificial intelligence models facilitates the implementation of digital twinning and has the potential to redefine cardiovascular risk prevention. Digital twinning combines vast amounts of data from diverse sources to construct virtual models of an individual. Emerging artificial intelligence models, called generalist AI, enable the processing of different types of data, including data from electronic health records, laboratory results, medical texts, imaging, genomics, or graphs. Among their unprecedented capabilities are an easy adaptation of a model to previously unseen medical tasks and the ability to reason and explain output using precise medical language derived from scientific literature, medical guidelines, or knowledge graphs. The proposed combination of a digital twinning approach with generalist AI is a path to accelerate the implementation of precision medicine and enhance early recognition and prevention of cardiovascular disease. This proposed strategy may extend to other domains to advance predictive, preventive, and precision medicine and also boost health research discoveries.

摘要

高度适应性和可重复使用的人工智能模型的快速发展促进了数字孪生的实施,并有可能重新定义心血管疾病风险预防。数字孪生结合了来自不同来源的大量数据,以构建个体的虚拟模型。新兴的人工智能模型,即通用人工智能,能够处理不同类型的数据,包括来自电子健康记录、实验室结果、医学文本、成像、基因组学或图表的数据。其前所未有的能力包括轻松将模型应用于以前未见过的医疗任务,以及使用源自科学文献、医学指南或知识图谱的精确医学语言对输出进行推理和解释的能力。将数字孪生方法与通用人工智能相结合的提议是加速精准医学实施、加强心血管疾病早期识别和预防的一条途径。这一提议的策略可能会扩展到其他领域,以推进预测性、预防性和精准医学,并促进健康研究发现。

相似文献

[1]
Digital twins: reimagining the future of cardiovascular risk prediction and personalised care.

Hellenic J Cardiol. 2025

[2]
Foundation models for generalist medical artificial intelligence.

Nature. 2023-4

[3]
Harnessing Electronic Health Records and Artificial Intelligence for Enhanced Cardiovascular Risk Prediction: A Comprehensive Review.

J Am Heart Assoc. 2025-3-18

[4]
Implementing Artificial Intelligence and Digital Health in Resource-Limited Settings? Top 10 Lessons We Learned in Congenital Heart Defects and Cardiology.

OMICS. 2020-5

[5]
Transforming Cardiovascular Care With Artificial Intelligence: From Discovery to Practice: JACC State-of-the-Art Review.

J Am Coll Cardiol. 2024-7-2

[6]
The Application of Preventive Medicine in the Future Digital Health Era.

J Med Internet Res. 2025-2-27

[7]
Dynamic mirroring: unveiling the role of digital twins, artificial intelligence and synthetic data for personalized medicine in laboratory medicine.

Clin Chem Lab Med. 2024-5-13

[8]
Transforming precision medicine: The potential of the clinical artificial intelligent single-cell framework.

Clin Transl Med. 2025-1

[9]
Building Digital Twins for Cardiovascular Health: From Principles to Clinical Impact.

J Am Heart Assoc. 2024-10

[10]
Toward precision health: applying artificial intelligence analytics to digital health biometric datasets.

Per Med. 2020-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索