Fonda Blake D, Kato Masato, Li Yang, Murray Dylan T
Department of Chemistry, University of California, Davis, California, 95616, United States of America.
Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America.
bioRxiv. 2024 Jun 2:2024.05.30.596698. doi: 10.1101/2024.05.30.596698.
The Tropomyosin 1 isoform I/C C-terminal domain (Tm1-LC) fibril structure is studied jointly with cryogenic electron microscopy (cryo-EM) and solid state nuclear magnetic resonance (NMR). This study demonstrates the complementary nature of these two structural biology techniques. Chemical shift assignments from solid state NMR are used to determine the secondary structure at the level of individual amino acids, which is faithfully seen in cryo-EM reconstructions. Additionally, solid state NMR demonstrates that the region not observed in the reconstructed cryo-EM density is primarily in a highly mobile random coil conformation rather than adopting multiple rigid conformations. Overall, this study illustrates the benefit of investigations combining cryo-EM and solid state NMR to investigate protein fibril structure.
利用低温电子显微镜(cryo-EM)和固态核磁共振(NMR)联合研究了原肌球蛋白1同工型I/C的C末端结构域(Tm1-LC)的纤维结构。这项研究证明了这两种结构生物学技术的互补性。固态NMR的化学位移归属用于确定单个氨基酸水平的二级结构,这在低温电子显微镜重建中得到了如实呈现。此外,固态NMR表明,在重建的低温电子显微镜密度中未观察到的区域主要处于高度灵活的无规卷曲构象,而不是采用多种刚性构象。总体而言,这项研究说明了结合低温电子显微镜和固态NMR来研究蛋白质纤维结构的益处。