Levy Axel, Grzadkowski Michal, Poitevin Frederic, Vallese Francesca, Clarke Oliver B, Wetzstein Gordon, Zhong Ellen D
bioRxiv. 2024 Jun 2:2024.05.30.596729. doi: 10.1101/2024.05.30.596729.
Proteins and other biomolecules form dynamic macromolecular machines that are tightly orchestrated to move, bind, and perform chemistry. Cryo-electron microscopy (cryo-EM) can access the intrinsic heterogeneity of these complexes and is therefore a key tool for understanding mechanism and function. However, 3D reconstruction of the resulting imaging data presents a challenging computational problem, especially without any starting information, a setting termed ab initio reconstruction. Here, we introduce a method, DRGN-AI, for ab initio heterogeneous cryo-EM reconstruction. With a two-step hybrid approach combining search and gradient-based optimization, DRGN-AI can reconstruct dynamic protein complexes from scratch without input poses or initial models. Using DRGN-AI, we reconstruct the compositional and conformational variability contained in a variety of benchmark datasets, process an unfiltered dataset of the DSL1/SNARE complex fully ab initio, and reveal a new "supercomplex" state of the human erythrocyte ankyrin-1 complex. With this expressive and scalable model for structure determination, we hope to unlock the full potential of cryo-EM as a high-throughput tool for structural biology and discovery.
蛋白质和其他生物分子形成动态的大分子机器,这些机器被精确地协调以进行移动、结合和化学反应。冷冻电子显微镜(cryo-EM)能够获取这些复合物的内在异质性,因此是理解其机制和功能的关键工具。然而,对所得成像数据进行三维重建是一个具有挑战性的计算问题,特别是在没有任何初始信息的情况下,即所谓的从头重建。在此,我们介绍一种用于从头进行异质冷冻电子显微镜重建的方法DRGN-AI。通过结合搜索和基于梯度的优化的两步混合方法,DRGN-AI可以从零开始重建动态蛋白质复合物,而无需输入姿态或初始模型。使用DRGN-AI,我们重建了各种基准数据集中包含的组成和构象变异性,完全从头处理了DSL1/SNARE复合物的未过滤数据集,并揭示了人类红细胞锚蛋白-1复合物的一种新的“超级复合物”状态。通过这种用于结构确定的具有表现力和可扩展性的模型,我们希望释放冷冻电子显微镜作为结构生物学和发现的高通量工具的全部潜力。