Suppr超能文献

利用随机梯度下降实现冷冻电镜中的高效高分辨率细化

Efficient high-resolution refinement in cryo-EM with stochastic gradient descent.

作者信息

Toader Bogdan, Brubaker Marcus A, Lederman Roy R

机构信息

Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.

York University, Toronto, Ontario, Canada.

出版信息

Acta Crystallogr D Struct Biol. 2025 Jul 1;81(Pt 7):327-343. doi: 10.1107/S205979832500511X. Epub 2025 Jun 23.

Abstract

Electron cryo-microscopy (cryo-EM) is an imaging technique that is widely used in structural biology to determine the three-dimensional structure of biological molecules from noisy two-dimensional projections with unknown orientations. As the typical pipeline involves processing large amounts of data, efficient algorithms are crucial for fast and reliable results. The stochastic gradient descent (SGD) algorithm has been used to improve the speed of ab initio reconstruction, which results in an initial, low-resolution estimation of the volume representing the molecule of interest, but has yet to be applied successfully in the high-resolution regime, where expectation-maximization algorithms achieve state-of-the-art results, at a high computational cost. In this article, we investigate the conditioning of the optimization problem and show that the large condition number prevents the successful application of gradient descent-based methods at high resolution. Our results include a theoretical analysis of the condition number of the optimization problem in a simplified setting where the individual projection directions are known, an algorithm based on computing a diagonal preconditioner using Hutchinson's diagonal estimator and numerical experiments showing the improvement in the convergence speed when using the estimated preconditioner with SGD. The preconditioned SGD approach can potentially enable a simple and unified approach to ab initio reconstruction and high-resolution refinement with faster convergence speed and higher flexibility, and our results are a promising step in this direction.

摘要

电子冷冻显微镜(cryo-EM)是一种成像技术,在结构生物学中被广泛用于从方向未知的有噪声二维投影中确定生物分子的三维结构。由于典型的流程涉及处理大量数据,高效算法对于快速且可靠的结果至关重要。随机梯度下降(SGD)算法已被用于提高从头开始重建的速度,这会得到一个表示感兴趣分子的体积的初始低分辨率估计,但尚未在高分辨率领域成功应用,在该领域期望最大化算法以高计算成本取得了最优结果。在本文中,我们研究了优化问题的条件数,并表明大的条件数阻碍了基于梯度下降的方法在高分辨率下的成功应用。我们的结果包括在单个投影方向已知的简化设置下对优化问题条件数的理论分析、一种基于使用哈钦森对角估计器计算对角预处理器的算法以及数值实验,这些实验展示了在使用估计的预处理器与SGD时收敛速度的提高。预处理后的SGD方法有可能实现一种简单统一的从头开始重建和高分辨率细化方法,具有更快的收敛速度和更高的灵活性,我们的结果是朝着这个方向迈出的有希望的一步。

相似文献

1
Efficient high-resolution refinement in cryo-EM with stochastic gradient descent.利用随机梯度下降实现冷冻电镜中的高效高分辨率细化
Acta Crystallogr D Struct Biol. 2025 Jul 1;81(Pt 7):327-343. doi: 10.1107/S205979832500511X. Epub 2025 Jun 23.

引用本文的文献

1
Probabilistic single-particle cryo-EM ab initio 3D reconstruction in SIMPLE.在SIMPLE中进行概率单粒子冷冻电镜从头三维重建。
Acta Crystallogr D Struct Biol. 2025 Aug 1;81(Pt 8):396-409. doi: 10.1107/S2059798325005686. Epub 2025 Jul 7.

本文引用的文献

1
InstaMap: instant-NGP for cryo-EM density maps.InstaMap:用于冷冻电镜密度图的即时神经图形处理器
Acta Crystallogr D Struct Biol. 2025 Apr 1;81(Pt 4):147-169. doi: 10.1107/S2059798325002025. Epub 2025 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验