Young Lindsey N, Sherrard Alice, Zhou Huabin, Shaikh Farhaz, Hutchings Joshua, Riggi Margot, Rosen Michael K, Giraldez Antonio J, Villa Elizabeth
School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
Yale University, New Haven, CT, USA.
bioRxiv. 2024 Oct 13:2024.10.12.617288. doi: 10.1101/2024.10.12.617288.
In situ cryo-Electron Microscopy (cryo-EM) enables the direct interrogation of structure-function relationships by resolving macromolecular structures in their native cellular environment. Tremendous progress in sample preparation, imaging and data processing over the past decade has contributed to the identification and determination of large biomolecular complexes. However, the majority of proteins are of a size that still eludes identification in cellular cryo-EM data, and most proteins exist in low copy numbers. Therefore, novel tools are needed for cryo-EM to identify the vast majority of macromolecules across multiple size scales (from microns to nanometers). Here, we introduce and validate novel nanogold probes that enable the detection of specific proteins using cryo-ET (cryo-Electron Tomography) and resin-embedded correlated light and electron microscopy (CLEM). We demonstrate that these nanogold probes can be introduced into live cells, in a manner that preserves intact molecular networks and cell viability. We use this system to identify both cytoplasmic and nuclear proteins by room temperature EM, and resolve associated structures by cryo-ET. We further employ gold particles of different sizes to enable future multiplexed labeling and structural analysis. By providing high efficiency protein labeling in live cells and molecular specificity within cryo-ET tomograms, we establish a broadly enabling tool that significantly expands the proteome available to electron microscopy.
原位冷冻电子显微镜(cryo-EM)能够通过解析天然细胞环境中的大分子结构来直接探究结构-功能关系。在过去十年中,样品制备、成像和数据处理方面取得了巨大进展,这有助于识别和确定大型生物分子复合物。然而,大多数蛋白质的大小仍然难以在细胞冷冻电镜数据中识别,并且大多数蛋白质以低拷贝数存在。因此,冷冻电镜需要新的工具来识别跨多个大小尺度(从微米到纳米)的绝大多数大分子。在这里,我们介绍并验证了新型纳米金探针,该探针能够使用冷冻电子断层扫描(cryo-ET)和树脂包埋的相关光电子显微镜(CLEM)检测特定蛋白质。我们证明,这些纳米金探针可以以保留完整分子网络和细胞活力的方式引入活细胞。我们使用该系统通过室温电子显微镜识别细胞质和核蛋白,并通过冷冻电子断层扫描解析相关结构。我们进一步使用不同大小的金颗粒以实现未来的多重标记和结构分析。通过在活细胞中提供高效的蛋白质标记以及在冷冻电子断层扫描图像中的分子特异性,我们建立了一种广泛适用的工具,显著扩展了可用于电子显微镜研究的蛋白质组。