Antonoudiou Pantelis, Basu Trina, Maguire Jamie
Tufts University School of Medicine.
Res Sq. 2024 May 30:rs.3.rs-4361048. doi: 10.21203/rs.3.rs-4361048/v1.
Despite the vast number of seizure detection publications there are no validated open-source tools for automating seizure detection based on electrographic recordings. Researchers instead rely on manual curation of seizure detection that is highly laborious, inefficient, error prone, and heavily biased. Here we developed an open-source software called SeizyML that uses sensitive machine learning models coupled with manual validation of detected events reducing bias and promoting efficient and accurate detection of electrographic seizures. We compared the validity of four interpretable machine learning models (decision tree, gaussian naïve bayes, passive aggressive classifier, and stochastic gradient descent classifier) on an extensive electrographic seizure dataset that we collected from chronically epileptic mice. We find that the gaussian naïve bayes and stochastic gradient descent models achieved the highest precision and f1 scores, while also detecting all seizures in our mouse dataset and only require a small amount of data to train the model and achieve good performance. Further, we demonstrate the utility of this approach to detect electrographic seizures in a human EEG dataset. This approach has the potential to be a transformative research tool overcoming the analysis bottleneck that slows research progress.
尽管有大量关于癫痫发作检测的出版物,但目前还没有经过验证的开源工具可用于基于脑电图记录自动检测癫痫发作。相反,研究人员依赖于对癫痫发作检测的人工筛选,这种方法非常费力、效率低下、容易出错且存在严重偏差。在此,我们开发了一款名为SeizyML的开源软件,它使用灵敏的机器学习模型,并结合对检测到的事件进行人工验证,以减少偏差并促进对脑电图癫痫发作的高效准确检测。我们在从慢性癫痫小鼠收集的大量脑电图癫痫发作数据集上,比较了四种可解释的机器学习模型(决策树、高斯朴素贝叶斯、被动攻击分类器和随机梯度下降分类器)的有效性。我们发现,高斯朴素贝叶斯模型和随机梯度下降模型实现了最高的精度和F1分数,同时还能检测出我们小鼠数据集中的所有癫痫发作,并且只需要少量数据来训练模型就能取得良好性能。此外,我们还展示了这种方法在人类脑电图数据集中检测脑电图癫痫发作的效用。这种方法有可能成为一种变革性的研究工具,克服减缓研究进展的分析瓶颈。