Suppr超能文献

基于极限学习机方法的癫痫患者活动识别系统

Epileptic Patient Activity Recognition System Using Extreme Learning Machine Method.

作者信息

Ayman Ummara, Zia Muhammad Sultan, Okon Ofonime Dominic, Rehman Najam-Ur, Meraj Talha, Ragab Adham E, Rauf Hafiz Tayyab

机构信息

Department of Computer Science, The University of Lahore, Chenab Campus, Gujrat 50700, Pakistan.

Department of Computer Science, The University of Chenab, Gujrat 50700, Pakistan.

出版信息

Biomedicines. 2023 Mar 7;11(3):816. doi: 10.3390/biomedicines11030816.

Abstract

The Human Activity Recognition (HAR) system is the hottest research area in clinical research. The HAR plays a vital role in learning about a patient's abnormal activities; based upon this information, the patient's psychological state can be estimated. An epileptic seizure is a neurological disorder of the human brain and affects millions of people worldwide. If epilepsy is diagnosed correctly and in an early stage, then up to 70% of people can be seizure-free. There is a need for intelligent automatic HAR systems that help clinicians diagnose neurological disorders accurately. In this research, we proposed a Deep Learning (DL) model that enables the detection of epileptic seizures in an automated way, addressing a need in clinical research. To recognize epileptic seizures from brain activities, EEG is a raw but good source of information. In previous studies, many techniques used raw data from EEG to help recognize epileptic patient activities; however, the applied method of extracting features required much intensive expertise from clinical aspects such as radiology and clinical methods. The image data are also used to diagnose epileptic seizures, but applying Machine Learning (ML) methods could address the overfitting problem. In this research, we mainly focused on classifying epilepsy through physical epileptic activities instead of feature engineering and performed the detection of epileptic seizures in three steps. In the first step, we used the open-source numerical dataset of epilepsy of Bonn university from the UCI Machine Learning repository. In the second step, data were fed to the proposed ELM model for training in different training and testing ratios with a little bit of rescaling because the dataset was already pre-processed, normalized, and restructured. In the third step, epileptic and non-epileptic activity was recognized, and in this step, EEG signal feature extraction was automatically performed by a DL model named ELM; features were selected by a Feature Selection (FS) algorithm based on ELM and the final classification was performed using the ELM classifier. In our presented research, seven different ML algorithms were applied for the binary classification of epileptic activities, including K-Nearest Neighbor (KNN), Naïve Bayes (NB), Logistic Regression (LR), Stochastic Gradient Boosting Classifier (SGDC), Gradient Boosting Classifier (GB), Decision Trees (DT), and three deep learning models named Extreme Learning Machine (ELM), Long Short-Term Memory (LSTM), and Artificial Neural Network (ANN). After deep analysis, it is observed that the best results were obtained by our proposed DL model, Extreme Learning Machine (ELM), with an accuracy of 100% accuracy and a 0.99 AUC. Such high performance has not attained in previous research. The proposed model's performance was checked with other models in terms of performance parameters, namely confusion matrix, accuracy, precision, recall, F1-score, specificity, sensitivity, and the ROC curve.

摘要

人类活动识别(HAR)系统是临床研究中最热门的研究领域。HAR在了解患者的异常活动方面起着至关重要的作用;基于这些信息,可以估计患者的心理状态。癫痫发作是一种人类大脑的神经紊乱疾病,影响着全球数百万人。如果癫痫能被正确且早期诊断,那么高达70%的人可以无癫痫发作。需要智能自动HAR系统来帮助临床医生准确诊断神经紊乱疾病。在本研究中,我们提出了一种深度学习(DL)模型,该模型能够以自动化方式检测癫痫发作,满足了临床研究的一项需求。为了从大脑活动中识别癫痫发作,脑电图(EEG)是原始但良好的信息来源。在先前的研究中,许多技术使用EEG的原始数据来帮助识别癫痫患者的活动;然而,所应用的特征提取方法需要来自放射学和临床方法等临床方面的大量专业知识。图像数据也用于诊断癫痫发作,但应用机器学习(ML)方法可以解决过拟合问题。在本研究中,我们主要专注于通过物理癫痫活动对癫痫进行分类,而不是特征工程,并分三步进行癫痫发作的检测。第一步,我们使用了来自UCI机器学习库的波恩大学癫痫开源数值数据集。第二步,将数据输入到所提出的极限学习机(ELM)模型中,以不同的训练和测试比例进行训练,并进行了少量的重新缩放,因为该数据集已经过预处理、归一化和重新结构化。第三步,识别癫痫和非癫痫活动,在这一步中,EEG信号特征提取由一个名为ELM的DL模型自动执行;特征通过基于ELM的特征选择(FS)算法进行选择,最终分类使用ELM分类器进行。在我们目前的研究中,应用了七种不同的ML算法对癫痫活动进行二分类,包括K近邻(KNN)、朴素贝叶斯(NB)、逻辑回归(LR)、随机梯度提升分类器(SGDC)、梯度提升分类器(GB)、决策树(DT),以及三种深度学习模型,即极限学习机(ELM)、长短期记忆(LSTM)和人工神经网络(ANN)。经过深入分析,发现我们提出的DL模型极限学习机(ELM)取得了最佳结果,准确率为100%,曲线下面积(AUC)为0.99。如此高的性能在先前的研究中尚未实现。在所提出模型的性能参数方面,即混淆矩阵、准确率、精确率、召回率、F1分数、特异性、敏感性和ROC曲线,与其他模型进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b664/10045857/f8ea8ce0f525/biomedicines-11-00816-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验