Suppr超能文献

出院时对产后抑郁症风险进行分层。

Stratifying Risk for Postpartum Depression at Time of Hospital Discharge.

作者信息

Clapp Mark A, Castro Victor M, Verhaak Pilar, McCoy Thomas H, Shook Lydia L, Edlow Andrea G, Perlis Roy H

机构信息

Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.

Center for Quantitative Health and Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA.

出版信息

medRxiv. 2024 May 27:2024.05.27.24307973. doi: 10.1101/2024.05.27.24307973.

Abstract

OBJECTIVE

Postpartum depression (PPD) represents a major contributor to postpartum morbidity and mortality. Beyond efforts at routine screening, risk stratification models could enable more targeted interventions in settings with limited resources. Thus, we aimed to develop and estimate the performance of a generalizable risk stratification model for PPD in patients without a history of depression using information collected as part of routine clinical care.

METHODS

We performed a retrospective cohort study of all individuals who delivered between 2017 and 2022 in one of two large academic medical centers and six community hospitals. An elastic net model was constructed and externally validated to predict PPD using sociodemographic factors, medical history, and prenatal depression screening information, all of which was known before discharge from the delivery hospitalization.

RESULTS

The cohort included 29,168 individuals; 2,703 (9.3%) met at least one criterion for postpartum depression in the 6 months following delivery. In the external validation data, the model had good discrimination and remained well-calibrated: area under the receiver operating characteristic curve 0.721 (95% CI: 0.707-0.734), Brier calibration score 0.088 (95% CI: 0.084 - 0.092). At a specificity of 90%, the positive predictive value was 28.0% (95% CI: 26.0-30.1%), and the negative predictive value was 92.2% (95% CI: 91.8-92.7%).

CONCLUSIONS

These findings demonstrate that a simple machine-learning model can be used to stratify the risk for PPD before delivery hospitalization discharge. This tool could help identify patients within a practice at the highest risk and facilitate individualized postpartum care planning regarding the prevention of, screening for, and management of PPD at the start of the postpartum period and potentially the onset of symptoms.

摘要

目的

产后抑郁症(PPD)是产后发病和死亡的主要原因。除了进行常规筛查外,风险分层模型可以在资源有限的情况下实现更有针对性的干预。因此,我们旨在利用作为常规临床护理一部分收集的信息,开发并评估一种适用于无抑郁症病史患者的PPD通用风险分层模型的性能。

方法

我们对2017年至2022年期间在两家大型学术医疗中心和六家社区医院之一分娩的所有个体进行了一项回顾性队列研究。构建了一个弹性网模型,并使用社会人口学因素、病史和产前抑郁症筛查信息进行外部验证,以预测PPD,所有这些信息在分娩住院出院前均已知。

结果

该队列包括29168名个体;2703名(9.3%)在分娩后的6个月内符合至少一项产后抑郁症标准。在外部验证数据中,该模型具有良好的区分度且校准良好:受试者操作特征曲线下面积为0.721(95%CI:0.707 - 0.734),Brier校准分数为0.088(95%CI:0.084 - 0.092)。在特异性为90%时,阳性预测值为28.0%(95%CI:26.0 - 30.1%),阴性预测值为92.2%(95%CI:91.8 - 92.7%)。

结论

这些发现表明,一个简单的机器学习模型可用于在分娩住院出院前对PPD风险进行分层。该工具可以帮助识别诊所中风险最高的患者,并有助于在产后初期以及潜在症状出现时制定关于PPD预防、筛查和管理的个性化产后护理计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fb/11160818/cd3e7b9b341c/nihpp-2024.05.27.24307973v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验