Suppr超能文献

深度神经网络可从12导联心电图中检测出局部室壁运动异常和临床前心血管疾病。

Deep neural networks detect regional wall motion abnormalities and preclinical cardiovascular disease from 12-lead ECGs.

作者信息

Carbonati Tanner, Eslami Parastou, Waks Jonathan W, Fiorina Laurent, Chaudhari Ashish, Henry Christine, Johnson Alistair E W, Pollard Tom, Gow Brian, Mark Roger G, Horng Steven, Greenbaum Nathaniel R

机构信息

Philips Healthcare, Paris, France.

Philips Healthcare, Cambridge MA.

出版信息

medRxiv. 2024 Jun 1:2024.05.31.24308304. doi: 10.1101/2024.05.31.24308304.

Abstract

BACKGROUND

Identifying regional wall motion abnormalities (RWMAs) is critical for diagnosing and risk stratifying patients with cardiovascular disease, particularly ischemic heart disease. We hypothesized that a deep neural network could accurately identify patients with regional wall motion abnormalities from a readily available standard 12-lead electrocardiogram (ECG).

METHODS

This observational, retrospective study included patients who were treated at Beth Israel Deaconess Medical Center and had an ECG and echocardiogram performed within 14 days of each other between 2008 and 2019. We trained a convolutional neural network to detect the presence of RWMAs, qualitative global right ventricular (RV) hypokinesis, and varying degrees of left ventricular dysfunction (left ventricular ejection fraction [LVEF] ≤50%, LVEF ≤40%, and LVEF ≤35%) identified by echocardiography, using ECG data alone. Patients were randomly split into development (80%) and test sets (20%). Model performance was assessed using area under the receiver operating characteristic curve (AUC). Cox proportional hazard models adjusted for age and sex were performed to estimate the risk of future acute coronary events.

RESULTS

The development set consisted of 19,837 patients (mean age 66.7±16.4; 46.7% female) and the test set comprised of 4,953 patients (mean age 67.5±15.8 years; 46.5% female). On the test dataset, the model accurately identified the presence of RWMA, RV hypokinesis, LVEF ≤50%, LVEF ≤40%, and LVEF ≤35% with AUCs of 0.87 (95% CI 0.858-0.882), 0.888 (95% CI 0.878-0.899), 0.923 (95% CI 0.914-0.933), 0.93 (95% CI 0.921-0.939), and 0.876 (95% CI 0.858-0.896), respectively. Among patients with normal biventricular function at the time of the index ECG, those classified as having RMWA by the model were 3 times the risk (age- and sex-adjusted hazard ratio, 2.8; 95% CI 1.9-3.9) for future acute coronary events compared to those classified as negative.

CONCLUSIONS

We demonstrate that a deep neural network can help identify regional wall motion abnormalities and reduced LV function from a 12-lead ECG and could potentially be used as a screening tool for triaging patients who need either initial or repeat echocardiographic imaging.

摘要

背景

识别局部室壁运动异常(RWMA)对于心血管疾病患者,尤其是缺血性心脏病患者的诊断和风险分层至关重要。我们假设深度神经网络可以从易于获取的标准12导联心电图(ECG)中准确识别出有局部室壁运动异常的患者。

方法

这项观察性回顾性研究纳入了在贝斯以色列女执事医疗中心接受治疗的患者,这些患者在2008年至2019年期间彼此在14天内进行了心电图和超声心动图检查。我们训练了一个卷积神经网络,仅使用心电图数据来检测经超声心动图识别出的局部室壁运动异常、定性的整体右心室(RV)运动减弱以及不同程度的左心室功能障碍(左心室射血分数[LVEF]≤50%、LVEF≤40%和LVEF≤35%)。患者被随机分为开发集(80%)和测试集(20%)。使用受试者工作特征曲线下面积(AUC)评估模型性能。进行了针对年龄和性别的Cox比例风险模型,以估计未来急性冠状动脉事件的风险。

结果

开发集包括19837例患者(平均年龄66.7±16.4岁;46.7%为女性),测试集包括4953例患者(平均年龄67.5±15.8岁;46.5%为女性)。在测试数据集中,该模型能够准确识别局部室壁运动异常、右心室运动减弱、LVEF≤50%、LVEF≤40%和LVEF≤35%的存在,其AUC分别为0.87(95%CI 0.858 - 0.882)、0.888(95%CI 0.878 - 0.899)、0.923(95%CI 0.914 - 0.933)、0.93(95%CI 0.921 - 0.939)和0.876(95%CI 0.858 - 0.896)。在索引心电图时双心室功能正常的患者中,被模型分类为有局部室壁运动异常的患者发生未来急性冠状动脉事件的风险是被分类为阴性患者的3倍(年龄和性别调整后的风险比为2.8;95%CI 1.9 - 3.9)。

结论

我们证明深度神经网络可以帮助从12导联心电图中识别局部室壁运动异常和左心室功能降低,并且有可能用作对需要初次或重复超声心动图成像的患者进行分流的筛查工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验