Suppr超能文献

用于植入式电子设备的微创电源。

Minimally invasive power sources for implantable electronics.

作者信息

Xu Ming, Liu Yuheng, Yang Kai, Li Shaoyin, Wang Manman, Wang Jianan, Yang Dong, Shkunov Maxim, Silva S Ravi P, Castro Fernando A, Zhao Yunlong

机构信息

Advanced Technology Institute University of Surrey Guildford Surrey UK.

Department of Chemical and Process Engineering University of Surrey Guildford Surrey UK.

出版信息

Exploration (Beijing). 2023 Aug 31;4(1):20220106. doi: 10.1002/EXP.20220106. eCollection 2024 Feb.

Abstract

As implantable medical electronics (IMEs) developed for healthcare monitoring and biomedical therapy are extensively explored and deployed clinically, the demand for non-invasive implantable biomedical electronics is rapidly surging. Current rigid and bulky implantable microelectronic power sources are prone to immune rejection and incision, or cannot provide enough energy for long-term use, which greatly limits the development of miniaturized implantable medical devices. Herein, a comprehensive review of the historical development of IMEs and the applicable miniaturized power sources along with their advantages and limitations is given. Despite recent advances in microfabrication techniques, biocompatible materials have facilitated the development of IMEs system toward non-invasive, ultra-flexible, bioresorbable, wireless and multifunctional, progress in the development of minimally invasive power sources in implantable systems has remained limited. Here three promising minimally invasive power sources summarized, including energy storage devices (biodegradable primary batteries, rechargeable batteries and supercapacitors), human body energy harvesters (nanogenerators and biofuel cells) and wireless power transfer (far-field radiofrequency radiation, near-field wireless power transfer, ultrasonic and photovoltaic power transfer). The energy storage and energy harvesting mechanism, configurational design, material selection, output power and in vivo applications are also discussed. It is expected to give a comprehensive understanding of the minimally invasive power sources driven IMEs system for painless health monitoring and biomedical therapy with long-term stable functions.

摘要

随着用于医疗监测和生物医学治疗的可植入式医疗电子设备(IMEs)在临床上得到广泛探索和应用,对非侵入式可植入生物医学电子设备的需求正在迅速飙升。当前刚性且笨重的可植入微电子电源容易引发免疫排斥和切口问题,或者无法提供足够的能量用于长期使用,这极大地限制了小型化可植入医疗设备的发展。在此,对IMEs的历史发展以及适用的小型化电源及其优缺点进行了全面综述。尽管微加工技术最近取得了进展,生物相容性材料推动了IMEs系统朝着非侵入式、超柔性、可生物吸收、无线和多功能的方向发展,但可植入系统中微创电源的开发进展仍然有限。这里总结了三种有前景的微创电源,包括能量存储设备(可生物降解一次电池、可充电电池和超级电容器)、人体能量收集器(纳米发电机和生物燃料电池)以及无线功率传输(远场射频辐射、近场无线功率传输、超声波和光伏功率传输)。还讨论了能量存储和能量收集机制、结构设计、材料选择、输出功率和体内应用。期望能全面了解由微创电源驱动的IMEs系统,以实现具有长期稳定功能的无痛健康监测和生物医学治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8615/10867386/8159c25771ad/EXP2-4-20220106-g005.jpg

相似文献

1
Minimally invasive power sources for implantable electronics.
Exploration (Beijing). 2023 Aug 31;4(1):20220106. doi: 10.1002/EXP.20220106. eCollection 2024 Feb.
2
Recent Advances of Energy Solutions for Implantable Bioelectronics.
Adv Healthc Mater. 2021 Sep;10(17):e2100199. doi: 10.1002/adhm.202100199. Epub 2021 Apr 30.
3
Materials Strategies and Device Architectures of Emerging Power Supply Devices for Implantable Bioelectronics.
Small. 2020 Apr;16(15):e1902827. doi: 10.1002/smll.201902827. Epub 2019 Sep 12.
4
Biomimetic Exogenous "Tissue Batteries" as Artificial Power Sources for Implantable Bioelectronic Devices Manufacturing.
Adv Sci (Weinh). 2024 Mar;11(11):e2307369. doi: 10.1002/advs.202307369. Epub 2024 Jan 9.
5
A comprehensive review of powering methods used in state-of-the-art miniaturized implantable electronic devices.
Biosens Bioelectron. 2021 Jan 15;172:112781. doi: 10.1016/j.bios.2020.112781. Epub 2020 Oct 31.
6
Powering Implantable and Ingestible Electronics.
Adv Funct Mater. 2021 Oct 26;31(44). doi: 10.1002/adfm.202009289. Epub 2021 Feb 4.
7
Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics.
ACS Nano. 2020 Jun 23;14(6):6436-6448. doi: 10.1021/acsnano.9b08268. Epub 2020 Jun 1.
8
Implantable Energy-Harvesting Devices.
Adv Mater. 2018 Nov;30(44):e1801511. doi: 10.1002/adma.201801511. Epub 2018 Jul 24.
9
Self-Powered Implantable Medical Devices: Photovoltaic Energy Harvesting Review.
Adv Healthc Mater. 2020 Sep;9(17):e2000779. doi: 10.1002/adhm.202000779. Epub 2020 Jul 29.
10
Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator.
Nano Energy. 2019 Feb;56:216-224. doi: 10.1016/j.nanoen.2018.11.052. Epub 2018 Nov 22.

引用本文的文献

1
Fully biocompatible, thermally drawn fiber supercapacitors for long-term bio-implantation.
Nat Commun. 2025 Sep 2;16(1):8207. doi: 10.1038/s41467-025-63649-y.
2
A closed loop fully automated wireless vagus nerve stimulation system.
Sci Rep. 2025 Jul 30;15(1):27856. doi: 10.1038/s41598-025-11159-8.
3
ALD-Grown ZnO TFTs Patterned by High-Resolution Reverse-Offset Printing.
ACS Appl Mater Interfaces. 2025 Jun 11;17(23):34150-34160. doi: 10.1021/acsami.5c03321. Epub 2025 Jun 3.
4
Smart Dust for Chemical Mapping.
Adv Mater. 2025 May;37(19):e2419052. doi: 10.1002/adma.202419052. Epub 2025 Mar 25.
5
A microscale soft lithium-ion battery for tissue stimulation.
Nat Chem Eng. 2024;1(11):691-701. doi: 10.1038/s44286-024-00136-z. Epub 2024 Oct 25.
6
Plasmid DNA Delivery into the Skin via Electroporation with a Depot-Type Electrode.
Pharmaceutics. 2024 Sep 18;16(9):1219. doi: 10.3390/pharmaceutics16091219.
7
Next generation of gastrointestinal electrophysiology devices.
Nat Rev Gastroenterol Hepatol. 2024 Jul;21(7):457-458. doi: 10.1038/s41575-024-00952-x.

本文引用的文献

1
Self-powered technology based on nanogenerators for biomedical applications.
Exploration (Beijing). 2021 Sep 1;1(1):90-114. doi: 10.1002/EXP.20210152. eCollection 2021 Aug.
2
An Edible and Nutritive Zinc-Ion Micro-supercapacitor in the Stomach with Ultrahigh Energy Density.
ACS Nano. 2022 Sep 27;16(9):15261-15272. doi: 10.1021/acsnano.2c06656. Epub 2022 Sep 1.
3
Ultra-Thin Flexible Encapsulating Materials for Soft Bio-Integrated Electronics.
Adv Sci (Weinh). 2022 Oct;9(30):e2202980. doi: 10.1002/advs.202202980. Epub 2022 Aug 28.
4
A tissue-like neurotransmitter sensor for the brain and gut.
Nature. 2022 Jun;606(7912):94-101. doi: 10.1038/s41586-022-04615-2. Epub 2022 Jun 1.
6
Recent Advances in Encapsulation of Flexible Bioelectronic Implants: Materials, Technologies, and Characterization Methods.
Adv Mater. 2022 Aug;34(34):e2201129. doi: 10.1002/adma.202201129. Epub 2022 Jul 20.
7
Emerging Bioelectronic Strategies for Cardiovascular Tissue Engineering and Implantation.
Small. 2022 Apr;18(17):e2105281. doi: 10.1002/smll.202105281. Epub 2022 Feb 4.
8
Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine.
Adv Mater. 2022 Mar;34(10):e2106787. doi: 10.1002/adma.202106787. Epub 2022 Jan 27.
9
A Tissue-Like Soft All-Hydrogel Battery.
Adv Mater. 2022 Jan;34(4):e2105120. doi: 10.1002/adma.202105120. Epub 2021 Dec 9.
10
Electronics with shape actuation for minimally invasive spinal cord stimulation.
Sci Adv. 2021 Jun 25;7(26). doi: 10.1126/sciadv.abg7833. Print 2021 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验