文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

免疫调节伪装纳米平台:一种改善癌症纳米免疫疗法的有前景的策略。

Immune-regulating camouflaged nanoplatforms: A promising strategy to improve cancer nano-immunotherapy.

作者信息

Chen Biao-Qi, Zhao Yi, Zhang Yang, Pan Yu-Jing, Xia Hong-Ying, Kankala Ranjith Kumar, Wang Shi-Bin, Liu Gang, Chen Ai-Zheng

机构信息

Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China.

State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China.

出版信息

Bioact Mater. 2022 Aug 10;21:1-19. doi: 10.1016/j.bioactmat.2022.07.023. eCollection 2023 Mar.


DOI:10.1016/j.bioactmat.2022.07.023
PMID:36017071
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9382433/
Abstract

Although nano-immunotherapy has advanced dramatically in recent times, there remain two significant hurdles related to immune systems in cancer treatment, such as (namely) inevitable immune elimination of nanoplatforms and severely immunosuppressive microenvironment with low immunogenicity, hampering the performance of nanomedicines. To address these issues, several immune-regulating camouflaged nanocomposites have emerged as prevailing strategies due to their unique characteristics and specific functionalities. In this review, we emphasize the composition, performances, and mechanisms of various immune-regulating camouflaged nanoplatforms, including polymer-coated, cell membrane-camouflaged, and exosome-based nanoplatforms to evade the immune clearance of nanoplatforms or upregulate the immune function against the tumor. Further, we discuss the applications of these immune-regulating camouflaged nanoplatforms in directly boosting cancer immunotherapy and some immunogenic cell death-inducing immunotherapeutic modalities, such as chemotherapy, photothermal therapy, and reactive oxygen species-mediated immunotherapies, highlighting the current progress and recent advancements. Finally, we conclude the article with interesting perspectives, suggesting future tendencies of these innovative camouflaged constructs towards their translation pipeline.

摘要

尽管纳米免疫疗法近年来取得了显著进展,但在癌症治疗中与免疫系统相关仍存在两个重大障碍,即纳米平台不可避免地被免疫清除以及具有低免疫原性的严重免疫抑制微环境,这阻碍了纳米药物的性能。为了解决这些问题,几种免疫调节伪装纳米复合材料因其独特的特性和特定功能而成为流行策略。在这篇综述中,我们强调了各种免疫调节伪装纳米平台的组成、性能和机制,包括聚合物包覆、细胞膜伪装和基于外泌体的纳米平台,以逃避纳米平台的免疫清除或上调针对肿瘤的免疫功能。此外,我们讨论了这些免疫调节伪装纳米平台在直接促进癌症免疫治疗和一些诱导免疫原性细胞死亡的免疫治疗方式(如化疗、光热疗法和活性氧介导的免疫疗法)中的应用,突出了当前的进展和最新成果。最后,我们以有趣的观点结束本文,提出这些创新伪装构建体在其转化流程方面的未来趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/c309da7e9976/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/896b0614a799/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/1652fc1d9a31/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/d2a8fa146f00/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/c0a6af2b2bee/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/3726131032f3/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/6817d94824ee/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/7400d2e6b1f0/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/a1a31ea76c1d/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/6055a574a34a/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/2868c433f93a/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/45188ad3433f/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/c309da7e9976/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/896b0614a799/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/1652fc1d9a31/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/d2a8fa146f00/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/c0a6af2b2bee/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/3726131032f3/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/6817d94824ee/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/7400d2e6b1f0/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/a1a31ea76c1d/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/6055a574a34a/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/2868c433f93a/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/45188ad3433f/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9382433/c309da7e9976/gr11.jpg

相似文献

[1]
Immune-regulating camouflaged nanoplatforms: A promising strategy to improve cancer nano-immunotherapy.

Bioact Mater. 2022-8-10

[2]
Engineering nanomedicines for immunogenic eradication of cancer cells: Recent trends and synergistic approaches.

Acta Pharm Sin B. 2024-6

[3]
Hybrid Cell Membrane-Based Nanoplatforms for Enhanced Immunotherapy against Cancer and Infectious Diseases.

Adv Healthc Mater. 2024-7

[4]
Nanomedicines for an Enhanced Immunogenic Cell Death-Based Cancer Vaccination Response.

Acc Chem Res. 2024-3-19

[5]
Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy.

Acta Pharmacol Sin. 2020-7

[6]
Cell membrane cloaked nanomedicines for bio-imaging and immunotherapy of cancer: Improved pharmacokinetics, cell internalization and anticancer efficacy.

J Control Release. 2021-7-10

[7]
Biointerface engineering nanoplatforms for cancer-targeted drug delivery.

Asian J Pharm Sci. 2020-7

[8]
Engineered Cell Membrane-Camouflaged Nanomaterials for Biomedical Applications.

Nanomaterials (Basel). 2024-2-23

[9]
Synergistic reinforcement of immunogenic cell death and transformation of tumor-associated macrophages via an M1-type macrophage membrane-camouflaged ferrous-supply-regeneration nanoplatform.

Acta Biomater. 2024-1-15

[10]
Tumor-Targeted Nanomedicine for Immunotherapy.

Acc Chem Res. 2020-12-15

引用本文的文献

[1]
Nano-Phytomedicine: Harnessing Plant-Derived Phytochemicals in Nanocarriers for Targeted Human Health Applications.

Molecules. 2025-7-29

[2]
The evolution of integrated magnetic hyperthermia and chemodynamic therapy for combating cancer: a comprehensive viewpoint.

Nanoscale Adv. 2025-7-23

[3]
Immunopharmacology of gastric cancer-deciphering immune cell subset responses and nanoparticle-mediated targeting.

Front Pharmacol. 2025-5-19

[4]
Advances and prospects of RNA delivery nanoplatforms for cancer therapy.

Acta Pharm Sin B. 2025-1

[5]
Quercetin nanoparticles as a therapeutic approach: pharmacological actions and potential applications in therapy.

BioTechnologia (Pozn). 2024-12-19

[6]
RNA nanotherapeutics for hepatocellular carcinoma treatment.

Theranostics. 2025-1-1

[7]
Immunogenic cell death: A new strategy to enhancing cancer immunotherapy.

Hum Vaccin Immunother. 2024-12-31

[8]
Targeting the CSF1/CSF1R signaling pathway: an innovative strategy for ultrasound combined with macrophage exhaustion in pancreatic cancer therapy.

Front Immunol. 2024

[9]
Strategies for the development of stimuli-responsive small molecule prodrugs for cancer treatment.

Front Pharmacol. 2024-7-31

[10]
Current status and future directions of nanovaccine for cancer: a bibliometric analysis during 2004-2023.

Front Immunol. 2024

本文引用的文献

[1]
A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy.

Nat Nanotechnol. 2022-5

[2]
Heterojunction engineered bioactive chlorella for cascade promoted cancer therapy.

J Control Release. 2022-5

[3]
A Platelet Intelligent Vehicle with Navigation for Cancer Photothermal-Chemotherapy.

ACS Nano. 2022-4-26

[4]
Symphony of nanomaterials and immunotherapy based on the cancer-immunity cycle.

Acta Pharm Sin B. 2022-1

[5]
A self-amplifying nanodrug to manipulate the Janus-faced nature of ferroptosis for tumor therapy.

Nanoscale Horiz. 2022-1-31

[6]
Nanotransferrin-Based Programmable Catalysis Mediates Three-Pronged Induction of Oxidative Stress to Enhance Cancer Immunotherapy.

ACS Nano. 2022-1-25

[7]
Mesenchymal stem cells, exosomes and exosome-mimics as smart drug carriers for targeted cancer therapy.

Colloids Surf B Biointerfaces. 2022-1

[8]
Cell membrane-covered nanoparticles as biomaterials.

Natl Sci Rev. 2019-5

[9]
Personalized Nanovaccine Coated with Calcinetin-Expressed Cancer Cell Membrane Antigen for Cancer Immunotherapy.

Nano Lett. 2021-10-13

[10]
Platelet-armored nanoplatform to harmonize janus-faced IFN-γ against tumor recurrence and metastasis.

J Control Release. 2021-10-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索