Tufail Farva, Farooq Abdull, Rahman Altaf Ur, El-Bahy Zeinhom M, Mersal Gaber A M, Abdul M, Nisar Muhammad, Jingfu Bao
School of Integrated Circuit Science and Engineering, University of Electronic Sciences and Technology of China, Chengdu 610054, People's Republic of China.
Department of Physics, Riphah International University, Lahore 54000, Pakistan.
ACS Omega. 2024 May 21;9(22):23782-23792. doi: 10.1021/acsomega.4c01767. eCollection 2024 Jun 4.
In this study, we conducted first-principles calculations interfaced with Boltzmann transport theory to examine the carrier-dependent thermoelectric properties of CrS Te (: 0, 1, 2) dichalcogenides monolayers. We conducted a systematic analysis of the structural, phonon band structures, elastic properties, electronic structures, and thermoelectric properties, of electron (e) and hole (h) doped CrS Te (: 0, 1, 2) dichalcogenides monolayers. The studied 2D TMDCs exhibit structural stability, as indicated by the negative formation energy. Additionally, the phonon band structures indicate no negative frequencies along any wave vector, confirming the dynamic stability of the CrS Te monolayers. CrS and CrTe monolayers are semiconductors with direct bandgaps of 1.01 and 0.67 eV, respectively. A Janus CrSTe monolayer has a smaller bandgap of 0.21 eV. Temperatures range between 300 and 500 K, and concentrations of e(h) doped in the range of 1.0 × 10-1.0 × 10 cm are used to compute the thermoelectric transport coefficients. The low lattice thermal conductivity is predicted for the studied compounds, among which Janus CrSTe and CrTe have the minimum value of κ ≈ 1 W/mK 700 K. The figure-of-merit ZT projected value at the optimal e(h) doping concentration for the CrS monolayer is as high as 0.07 (0.09) at 500 K. Our findings demonstrate how to design improved thermoelectric materials suitable for various thermoelectric devices.
在本研究中,我们结合玻尔兹曼输运理论进行了第一性原理计算,以研究CrS Te (: 0, 1, 2)二硫族化物单层的载流子相关热电性质。我们对电子(e)和空穴(h)掺杂的CrS Te (: 0, 1, 2)二硫族化物单层的结构、声子能带结构、弹性性质、电子结构和热电性质进行了系统分析。研究的二维过渡金属二硫族化合物表现出结构稳定性,负形成能表明了这一点。此外,声子能带结构表明沿任何波矢都没有负频率,证实了CrS Te 单层的动态稳定性。CrS和CrTe单层是半导体,直接带隙分别为1.01和0.67 eV。Janus CrSTe单层的带隙较小,为0.21 eV。温度范围在300至500 K之间,用于计算热电输运系数的e(h)掺杂浓度范围为1.0×10 - 1.0×10 cm 。预测所研究的化合物具有低晶格热导率,其中Janus CrSTe和CrTe在700 K时的κ最小值约为1 W/mK。在500 K时,CrS单层在最佳e(h)掺杂浓度下的优值ZT预测值高达0.07(0.09)。我们的研究结果展示了如何设计适用于各种热电装置的改进型热电材料。