Herrewijnen Elize, Nguyen Dong, Bex Floris, van Deemter Kees
Department of Information & Computing Sciences, Utrecht University, Utrecht, Netherlands.
National Police Lab AI, Netherlands Police, Driebergen, Netherlands.
Front Artif Intell. 2024 May 24;7:1260952. doi: 10.3389/frai.2024.1260952. eCollection 2024.
Asking annotators to explain "why" they labeled an instance yields annotator rationales: natural language explanations that provide reasons for classifications. In this work, we survey the collection and use of annotator rationales. Human-annotated rationales can improve data quality and form a valuable resource for improving machine learning models. Moreover, human-annotated rationales can inspire the construction and evaluation of model-annotated rationales, which can play an important role in explainable artificial intelligence.
要求注释者解释他们对一个实例进行标注的“原因”,会得到注释者的理由:即提供分类依据的自然语言解释。在这项工作中,我们对注释者理由的收集和使用进行了调查。人工标注的理由可以提高数据质量,并形成用于改进机器学习模型的宝贵资源。此外,人工标注的理由可以启发模型标注理由的构建和评估,这在可解释人工智能中可以发挥重要作用。