Suppr超能文献

临床试验偏倚风险自动化评估。

Automating risk of bias assessment for clinical trials.

出版信息

IEEE J Biomed Health Inform. 2015 Jul;19(4):1406-12. doi: 10.1109/JBHI.2015.2431314. Epub 2015 May 8.

Abstract

Systematic reviews, which summarize the entirety of the evidence pertaining to a specific clinical question, have become critical for evidence-based decision making in healthcare. But such reviews have become increasingly onerous to produce due to the exponentially expanding biomedical literature base. This study proposes a step toward mitigating this problem by automating risk of bias assessment in systematic reviews, in which reviewers determine whether study results may be affected by biases (e.g., poor randomization or blinding). Conducting risk of bias assessment is an important but onerous task. We thus describe a machine learning approach to automate this assessment, using the standard Cochrane Risk of Bias Tool which assesses seven common types of bias. Training such a system would typically require a large labeled corpus, which would be prohibitively expensive to collect here. Instead, we use distant supervision, using data from the Cochrane Database of Systematic Reviews (a large repository of systematic reviews), to pseudoannotate a corpus of 2200 clinical trial reports in PDF format. We then develop a joint model which, using the full text of a clinical trial report as input, predicts the risks of bias while simultaneously extracting the text fragments supporting these assessments. This study represents a step toward automating or semiautomating extraction of data necessary for the synthesis of clinical trials.

摘要

系统评价总结了特定临床问题相关的全部证据,对于医疗保健领域的循证决策至关重要。但是,由于生物医学文献库呈指数级增长,此类综述的编制变得越来越繁重。本研究提出了一种通过自动化系统评价中的偏倚风险评估来缓解这一问题的方法,其中评审员确定研究结果是否可能受到偏倚(例如,随机分组或盲法不佳)的影响。进行偏倚风险评估是一项重要但繁重的任务。因此,我们使用标准的 Cochrane 偏倚风险工具(评估七种常见类型的偏倚)来描述一种自动化评估的机器学习方法。训练这样的系统通常需要一个大型的标记语料库,在这里收集这个语料库会非常昂贵。相反,我们使用远程监督,使用来自 Cochrane 系统评价数据库(一个大型系统评价存储库)的数据来对 2200 篇 PDF 格式的临床试验报告进行伪注释。然后,我们开发了一个联合模型,该模型使用临床试验报告的全文作为输入,在提取支持这些评估的文本片段的同时预测偏倚风险。本研究朝着自动化或半自动提取临床试验综合所需的数据迈出了一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验