Suppr超能文献

移动用户界面修复:一种基于深度学习的移动用户界面代码异味检测技术。

Mobile-UI-Repair: a deep learning based UI smell detection technique for mobile user interface.

作者信息

Ali Asif, Xia Yuanqing, Navid Qamar, Khan Zohaib Ahmad, Khan Javed Ali, Aldakheel Eman Abdullah, Khafaga Doaa

机构信息

School of Automation, Beijing Institute of Technology, Beijing, China.

Zhongyuan University of Technology, Zhengzhou, Henan, China.

出版信息

PeerJ Comput Sci. 2024 May 16;10:e2028. doi: 10.7717/peerj-cs.2028. eCollection 2024.

Abstract

The graphical user interface (GUI) in mobile applications plays a crucial role in connecting users with mobile applications. GUIs often receive many UI design smells, bugs, or feature enhancement requests. The design smells include text overlap, component occlusion, blur screens, null values, and missing images. It also provides for the behavior of mobile applications during their usage. Manual testing of mobile applications (app as short in the rest of the document) is essential to ensuring app quality, especially for identifying usability and accessibility that may be missed during automated testing. However, it is time-consuming and inefficient due to the need for testers to perform actions repeatedly and the possibility of missing some functionalities. Although several approaches have been proposed, they require significant performance improvement. In addition, the key challenges of these approaches are incorporating the design guidelines and rules necessary to follow during app development and combine the syntactical and semantic information available on the development forums. In this study, we proposed a UI bug identification and localization approach called Mobile-UI-Repair (M-UI-R). M-UI-R is capable of recognizing graphical user interfaces (GUIs) display issues and accurately identifying the specific location of the bug within the GUI. M-UI-R is trained and tested on the history data and also validated on real-time data. The evaluation shows that the average precision is 87.7% and the average recall is 86.5% achieved in the detection of UI display issues. M-UI-R also achieved an average precision of 71.5% and an average recall of 70.7% in the localization of UI design smell. Moreover, a survey involving eight developers demonstrates that the proposed approach provides valuable support for enhancing the user interface of mobile applications. This aids developers in their efforts to fix bugs.

摘要

移动应用程序中的图形用户界面(GUI)在连接用户与移动应用程序方面起着至关重要的作用。GUI经常会收到许多用户界面设计异味、漏洞或功能增强请求。设计异味包括文本重叠、组件遮挡、屏幕模糊、空值和图像缺失。它还规定了移动应用程序在使用过程中的行为。对移动应用程序(在本文其余部分简称为应用)进行手动测试对于确保应用质量至关重要,特别是对于识别自动化测试期间可能遗漏的可用性和可访问性问题。然而,由于测试人员需要反复执行操作,并且可能会遗漏一些功能,因此这既耗时又低效。尽管已经提出了几种方法,但它们需要显著提高性能。此外,这些方法的关键挑战在于纳入应用开发过程中必须遵循的设计指南和规则,并结合开发论坛上可用的句法和语义信息。在本研究中,我们提出了一种名为Mobile-UI-Repair(M-UI-R)的用户界面漏洞识别和定位方法。M-UI-R能够识别图形用户界面(GUI)显示问题,并准确识别GUI中漏洞的具体位置。M-UI-R在历史数据上进行训练和测试,并在实时数据上进行验证。评估表明,在检测用户界面显示问题时,平均精度为87.7%,平均召回率为86.5%。M-UI-R在用户界面设计异味定位方面也实现了平均精度71.5%和平均召回率70.7%。此外,一项涉及八位开发者的调查表明,所提出的方法为增强移动应用程序的用户界面提供了有价值的支持。这有助于开发者修复漏洞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e0/11157604/15a4cb1c2867/peerj-cs-10-2028-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验