Suppr超能文献

基于组织病理学的人工智能模型预测肾癌临床试验中抗血管生成治疗反应。

Histopathology Based AI Model Predicts Anti-Angiogenic Therapy Response in Renal Cancer Clinical Trial.

作者信息

Jasti Jay, Zhong Hua, Panwar Vandana, Jarmale Vipul, Miyata Jeffrey, Carrillo Deyssy, Christie Alana, Rakheja Dinesh, Modrusan Zora, Kadel Edward Ernest, Beig Niha, Huseni Mahrukh, Brugarolas James, Kapur Payal, Rajaram Satwik

机构信息

Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.

Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.

出版信息

ArXiv. 2024 May 28:arXiv:2405.18327v1.

Abstract

BACKGROUND

Predictive biomarkers of treatment response are lacking for metastatic clearcell renal cell carcinoma (ccRCC), a tumor type that is treated with angiogenesis inhibitors, immune checkpoint inhibitors, mTOR inhibitors and a HIF2 inhibitor. The Angioscore, an RNA-based quantification of angiogenesis, is arguably the best candidate to predict anti-angiogenic (AA) response. However, the clinical adoption of transcriptomic assays faces several challenges including standardization, time delay, and high cost. Further, ccRCC tumors are highly heterogenous, and sampling multiple areas for sequencing is impractical.

APPROACH

Here we present a novel deep learning (DL) approach to predict the Angioscore from ubiquitous histopathology slides. In order to overcome the lack of interpretability, one of the biggest limitations of typical DL models, our model produces a visual vascular network which is the basis of the model's prediction. To test its reliability, we applied this model to multiple cohorts including a clinical trial dataset.

RESULTS

Our model accurately predicts the RNA-based Angioscore on multiple independent cohorts (spearman correlations of 0.77 and 0.73). Further, the predictions help unravel meaningful biology such as association of angiogenesis with grade, stage, and driver mutation status. Finally, we find our model is able to predict response to AA therapy, in both a real-world cohort and the IMmotion150 clinical trial. The predictive power of our model vastly exceeds that of CD31, a marker of vasculature, and nearly rivals the performance (c-index 0.66 vs 0.67) of the ground truth RNA-based Angioscore at a fraction of the cost.

CONCLUSION

By providing a robust yet interpretable prediction of the Angioscore from histopathology slides alone, our approach offers insights into angiogenesis biology and AA treatment response.

摘要

背景

转移性透明细胞肾细胞癌(ccRCC)缺乏治疗反应的预测生物标志物,这种肿瘤类型采用血管生成抑制剂、免疫检查点抑制剂、mTOR抑制剂和一种HIF2抑制剂进行治疗。血管生成评分(Angioscore)是一种基于RNA的血管生成定量指标,可以说是预测抗血管生成(AA)反应的最佳候选指标。然而,转录组分析在临床应用上面临着包括标准化、时间延迟和高成本在内的诸多挑战。此外,ccRCC肿瘤具有高度异质性,对多个区域进行采样测序并不实际。

方法

在此,我们提出一种新颖的深度学习(DL)方法,可从普遍存在的组织病理学切片预测血管生成评分。为了克服典型DL模型的最大局限性之一——缺乏可解释性,我们的模型生成了一个视觉血管网络,这是模型预测的基础。为了测试其可靠性,我们将该模型应用于多个队列,包括一个临床试验数据集。

结果

我们的模型在多个独立队列中准确预测了基于RNA的血管生成评分(斯皮尔曼相关系数分别为0.77和0.73)。此外,这些预测有助于揭示有意义的生物学现象,如血管生成与分级、分期和驱动基因突变状态的关联。最后,我们发现我们的模型能够在真实世界队列和IMmotion150临床试验中预测对AA治疗的反应。我们模型的预测能力大大超过了血管系统标志物CD31,并且以一小部分成本几乎可与基于RNA的血管生成评分的性能(c指数0.66对0.67)相媲美。

结论

通过仅从组织病理学切片提供对血管生成评分的稳健且可解释的预测,我们的方法为血管生成生物学和AA治疗反应提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdb5/11160863/1501b5161a96/nihpp-2405.18327v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验