Suppr超能文献

单细胞和批量转录组的综合分析确定了基于自然杀伤细胞标记基因的特征,以预测透明细胞肾细胞癌的预后和治疗反应。

Integrated analysis of single-cell and bulk transcriptome identifies a signature based on NK cell marker genes to predict prognosis and therapeutic response in clear cell renal cell carcinoma.

作者信息

Wang Ke, Yu Mingyang, Zhang Zhouzhou, Yin Rong, Chen Qifeng, Zhao Xuezhi, Yu Hongqi

机构信息

Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.

Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.

出版信息

Transl Cancer Res. 2023 May 31;12(5):1270-1289. doi: 10.21037/tcr-22-2782. Epub 2023 Apr 12.

Abstract

BACKGROUND

Accumulating evidence has highlighted the effects of natural killer (NK) cells on shaping anti-tumor immunity. This study aimed to construct an NK cell marker gene signature (NKMS) to predict prognosis and therapeutic response of clear cell renal cell carcinoma (ccRCC) patients.

METHODS

Publicly available single-cell and bulk RNA profiles with matched clinical information of ccRCC patients were collected from Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), ArrayExpress, and International Cancer Genome Consortium (ICGC) databases. A novel NKMS was constructed, and its prognostic value, associated immunogenomic features and predictive capability to immune checkpoint inhibitors (ICIs) and anti-angiogenic therapies were evaluated in ccRCC patients.

RESULTS

We identified 52 NK cell marker genes by single-cell RNA-sequencing (scRNA-seq) analysis in GSE152938 and GSE159115. After least absolute shrinkage and selection operator (LASSO) and Cox regression, the most prognostic 7 genes ( and ) composed NKMS using bulk transcriptome from TCGA. Survival and time-dependent receiver operating characteristic (ROC) analysis exhibited exceptional predictive capability of the signature in the training set and two independent validation cohorts (E-MTAB-1980 and RECA-EU cohorts). The seven-gene signature was able to identify patients within high Fuhrman grade (G3-G4) and American Joint Committee on Cancer (AJCC) stage (III-IV). Multivariate analysis confirmed the independent prognostic value of the signature, and a nomogram was built for clinical utility. The high-risk group was characterized by a higher tumor mutation burden (TMB) and greater infiltration of immunocytes, particularly CD8 T cells, regulatory T (Treg) cells and follicular helper T (Tfh) cells, in parallel with higher expression of genes negatively regulating anti-tumor immunity. Moreover, high-risk tumors exhibited higher richness and diversity of T-cell receptor (TCR) repertoire. In two therapy cohorts of ccRCC patients (PMID32472114 and E-MTAB-3267), we demonstrated that high-risk group showed greater sensitivity to ICIs, whereas the low-risk group was more likely to benefit from anti-angiogenic therapy.

CONCLUSIONS

We identified a novel signature that can be utilized as an independent predictive biomarker and a tool for selecting the individualized treatment for ccRCC patients.

摘要

背景

越来越多的证据凸显了自然杀伤(NK)细胞在塑造抗肿瘤免疫方面的作用。本研究旨在构建一种NK细胞标志物基因特征(NKMS),以预测透明细胞肾细胞癌(ccRCC)患者的预后和治疗反应。

方法

从基因表达综合数据库(GEO)、癌症基因组图谱(TCGA)、ArrayExpress和国际癌症基因组联盟(ICGC)数据库中收集公开可用的ccRCC患者单细胞和批量RNA图谱以及匹配的临床信息。构建了一种新的NKMS,并在ccRCC患者中评估了其预后价值、相关免疫基因组特征以及对免疫检查点抑制剂(ICIs)和抗血管生成疗法的预测能力。

结果

我们通过对GSE152938和GSE159115中的单细胞RNA测序(scRNA-seq)分析鉴定出52个NK细胞标志物基因。经过最小绝对收缩和选择算子(LASSO)及Cox回归分析,使用来自TCGA的批量转录组,由7个最具预后价值的基因组成了NKMS。生存分析和时间依赖性受试者工作特征(ROC)分析显示,该特征在训练集和两个独立验证队列(E-MTAB-1980和RECA-EU队列)中具有出色的预测能力。七基因特征能够识别高Fuhrman分级(G3-G4)和美国癌症联合委员会(AJCC)分期(III-IV)的患者。多变量分析证实了该特征的独立预后价值,并构建了列线图以供临床应用。高危组的特征是肿瘤突变负担(TMB)较高,免疫细胞浸润较多,尤其是CD8 T细胞、调节性T(Treg)细胞和滤泡辅助性T(Tfh)细胞,同时负调控抗肿瘤免疫的基因表达较高。此外,高危肿瘤的T细胞受体(TCR)库具有更高的丰富度和多样性。在ccRCC患者的两个治疗队列(PMID32472114和E-MTAB-3267)中,我们证明高危组对ICIs表现出更高的敏感性,而低危组更可能从抗血管生成治疗中获益。

结论

我们鉴定出一种新的特征,可作为独立的预测生物标志物以及为ccRCC患者选择个体化治疗的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d1c/10248582/e3da648045b0/tcr-12-05-1270-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验