Suppr超能文献

利用转录组学进行精准诊断:从癌症和脓毒症中吸取的经验教训。

Leveraging transcriptomics for precision diagnosis: Lessons learned from cancer and sepsis.

作者信息

Tsakiroglou Maria, Evans Anthony, Pirmohamed Munir

机构信息

Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.

Computational Biology Facility, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.

出版信息

Front Genet. 2023 Mar 10;14:1100352. doi: 10.3389/fgene.2023.1100352. eCollection 2023.

Abstract

Diagnostics require precision and predictive ability to be clinically useful. Integration of multi-omic with clinical data is crucial to our understanding of disease pathogenesis and diagnosis. However, interpretation of overwhelming amounts of information at the individual level requires sophisticated computational tools for extraction of clinically meaningful outputs. Moreover, evolution of technical and analytical methods often outpaces standardisation strategies. RNA is the most dynamic component of all -omics technologies carrying an abundance of regulatory information that is least harnessed for use in clinical diagnostics. Gene expression-based tests capture genetic and non-genetic heterogeneity and have been implemented in certain diseases. For example patients with early breast cancer are spared toxic unnecessary treatments with scores based on the expression of a set of genes (e.g., Oncotype DX). The ability of transcriptomics to portray the transcriptional status at a moment in time has also been used in diagnosis of dynamic diseases such as sepsis. Gene expression profiles identify endotypes in sepsis patients with prognostic value and a potential to discriminate between viral and bacterial infection. The application of transcriptomics for patient stratification in clinical environments and clinical trials thus holds promise. In this review, we discuss the current clinical application in the fields of cancer and infection. We use these paradigms to highlight the impediments in identifying useful diagnostic and prognostic biomarkers and propose approaches to overcome them and aid efforts towards clinical implementation.

摘要

诊断需要具备精准性和预测能力才具有临床实用性。将多组学数据与临床数据相结合对于我们理解疾病发病机制和诊断至关重要。然而,在个体层面解读海量信息需要复杂的计算工具来提取具有临床意义的输出结果。此外,技术和分析方法的发展往往超过了标准化策略的发展速度。RNA是所有组学技术中最具动态性的成分,携带大量调控信息,但在临床诊断中利用最少。基于基因表达的检测能够捕捉遗传和非遗传异质性,已在某些疾病中得到应用。例如,早期乳腺癌患者可根据一组基因(如Oncotype DX)的表达得分避免接受有毒且不必要的治疗。转录组学描绘某一时刻转录状态的能力也已用于脓毒症等动态疾病的诊断。基因表达谱可识别脓毒症患者的内型,具有预后价值,并有可能区分病毒感染和细菌感染。因此,转录组学在临床环境和临床试验中用于患者分层具有前景。在本综述中,我们讨论了目前在癌症和感染领域的临床应用。我们利用这些范例来突出在识别有用的诊断和预后生物标志物方面存在的障碍,并提出克服这些障碍的方法,以助力临床应用的推进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2e5/10036914/dc26fcf8f2dd/fgene-14-1100352-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验