Barakat Joseph M, Squires Todd M
Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106.
Phys Rev Fluids. 2023 May;8(5). doi: 10.1103/PhysRevFluids.8.054001. Epub 2023 May 10.
The mechanics of curved, heterogeneous, surfactant-laden surfaces and interfaces are important to a variety of engineering and biological applications. To date, most models of rheologically complex interfaces have focused on homogeneous systems of planar or fixed curvature. In this study, we investigate a simple, dynamical model of a two-phase surface fluid on a curved interface: a condensed, surface-viscous domain embedded within a surface-inviscid, spherical interface of time-varying radius of curvature. Our aim is to understand how changes in surface curvature generate two-dimensional Stokes flows inside the domain, thereby resisting curvature deformation and distorting the domain shape. We model the surface stress within the domain using the classical Boussinesq-Scriven constitutive equation, simplified for a near-spherical cap undergoing a small-amplitude curvature deformation. We then analyze the frequency-dependent dynamics of the surface stress and curvature within the domain when the pressure difference across the surface is sinusoidally oscillated. We find that the curvature relaxes diffusively, and thus define a Peclet number (Pe) relating the rate of diffusion to the oscillation frequency. At small enough Pe, the surface deforms quasi-statically, whereas at high Pe, the curvature varies sharply within a thin boundary layer adjacent to the domain border. Consequently, the curvature of the domain appears discontinuous from the rest of the surface under rapid oscillation. We then examine the linear stability of the domain shape to small, non-axisymmetric perturbations when the surface is steadily compressed (i.e., the pressure difference across it is increased). While the line tension at the domain border tends to maintain circular symmetry, surface-viscous stresses generated by surface compression tend to destabilize the perimeter. A shape instability arises above a critical surface capillary number (Ca) relating surface-viscous stresses to line tension. Moreover, we show that the mechanism of instability is distinct from that of the famous Saffman-Taylor fingering instability. Various extensions of our model are discussed, including materials with finite dilatational surface viscosity, linear and nonlinear (visco)elasticity, and large-amplitude deformations.
弯曲、非均匀、负载表面活性剂的表面和界面的力学性质对各种工程和生物应用都很重要。迄今为止,大多数流变学复杂界面的模型都集中在平面或固定曲率的均匀系统上。在本研究中,我们研究了弯曲界面上两相表面流体的一个简单动力学模型:一个凝聚的、表面粘性区域嵌入在曲率半径随时间变化的表面无粘性球形界面内。我们的目的是了解表面曲率的变化如何在该区域内产生二维斯托克斯流,从而抵抗曲率变形并使区域形状发生扭曲。我们使用经典的布辛涅斯克 - 斯克里文本构方程对该区域内的表面应力进行建模,该方程针对经历小振幅曲率变形的近球形帽进行了简化。然后,当表面上的压力差以正弦形式振荡时,我们分析该区域内表面应力和曲率的频率相关动力学。我们发现曲率以扩散方式松弛,因此定义了一个佩克莱数(Pe),它将扩散速率与振荡频率联系起来。在足够小的Pe时,表面准静态变形,而在高Pe时,曲率在与区域边界相邻的薄边界层内急剧变化。因此,在快速振荡下,该区域的曲率与表面的其余部分相比显得不连续。然后,当表面稳定压缩(即其两端的压力差增加)时,我们研究区域形状对小的非轴对称扰动的线性稳定性。虽然区域边界处的线张力倾向于保持圆对称性,但表面压缩产生的表面粘性应力倾向于使周边不稳定。在一个将表面粘性应力与线张力联系起来的临界表面毛细数(Ca)以上会出现形状不稳定性。此外,我们表明这种不稳定性机制与著名的萨夫曼 - 泰勒指进不稳定性不同。我们还讨论了模型的各种扩展,包括具有有限拉伸表面粘度的材料、线性和非线性(粘)弹性以及大振幅变形。