Suppr超能文献

基于深度学习时间序列分类的工作记忆负荷识别

Working memory load recognition with deep learning time series classification.

作者信息

Pang Richong, Sang Haojun, Yi Li, Gao Chenyang, Xu Hongkai, Wei Yanzhao, Zhang Lei, Sun Jinyan

机构信息

Barco Technology Limited, Zhuhai 519031, China.

Joint Laboratory of Brain-Verse Digital Convergence, Guangdong Institute of Intelligence Science and Technology, Zhuhai 519031, China.

出版信息

Biomed Opt Express. 2024 Apr 3;15(5):2780-2797. doi: 10.1364/BOE.516063. eCollection 2024 May 1.

Abstract

Working memory load (WML) is one of the widely applied signals in the areas of human-machine interaction. The precise evaluation of the WML is crucial for this kind of application. This study aims to propose a deep learning (DL) time series classification (TSC) model for inter-subject WML decoding. We used fNIRS to record the hemodynamic signals of 27 participants during visual working memory tasks. Traditional machine learning and deep time series classification algorithms were respectively used for intra-subject and inter-subject WML decoding from the collected blood oxygen signals. The intra-subject classification accuracy of LDA and SVM were 94.6% and 79.1%. Our proposed TAResnet-BiLSTM model had the highest inter-subject WML decoding accuracy, reaching 92.4%. This study provides a new idea and method for the brain-computer interface application of fNIRS in real-time WML detection.

摘要

工作记忆负荷(WML)是人机交互领域广泛应用的信号之一。对WML进行精确评估对于此类应用至关重要。本研究旨在提出一种用于个体间WML解码的深度学习(DL)时间序列分类(TSC)模型。我们使用功能近红外光谱(fNIRS)记录了27名参与者在视觉工作记忆任务期间的血液动力学信号。分别使用传统机器学习和深度时间序列分类算法,从收集到的血氧信号中进行个体内和个体间的WML解码。线性判别分析(LDA)和支持向量机(SVM)的个体内分类准确率分别为94.6%和79.1%。我们提出的TAResnet-BiLSTM模型在个体间WML解码方面具有最高的准确率,达到了92.4%。本研究为fNIRS在实时WML检测中的脑机接口应用提供了新的思路和方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaae/11161351/e36737a5bcfb/boe-15-5-2780-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验