Suppr超能文献

认知状态监测与数字环境下自适应教学的设计:使用被动脑机接口方法评估认知负荷所获得的经验教训。

Cognitive state monitoring and the design of adaptive instruction in digital environments: lessons learned from cognitive workload assessment using a passive brain-computer interface approach.

机构信息

Hypermedia Lab, Knowledge Media Research Center Tübingen, Germany.

Department of Computer Engineering, University of Tübingen Tübingen, Germany.

出版信息

Front Neurosci. 2014 Dec 9;8:385. doi: 10.3389/fnins.2014.00385. eCollection 2014.

Abstract

According to Cognitive Load Theory (CLT), one of the crucial factors for successful learning is the type and amount of working-memory load (WML) learners experience while studying instructional materials. Optimal learning conditions are characterized by providing challenges for learners without inducing cognitive over- or underload. Thus, presenting instruction in a way that WML is constantly held within an optimal range with regard to learners' working-memory capacity might be a good method to provide these optimal conditions. The current paper elaborates how digital learning environments, which achieve this goal can be developed by combining approaches from Cognitive Psychology, Neuroscience, and Computer Science. One of the biggest obstacles that needs to be overcome is the lack of an unobtrusive method of continuously assessing learners' WML in real-time. We propose to solve this problem by applying passive Brain-Computer Interface (BCI) approaches to realistic learning scenarios in digital environments. In this paper we discuss the methodological and theoretical prospects and pitfalls of this approach based on results from the literature and from our own research. We present a strategy on how several inherent challenges of applying BCIs to WML and learning can be met by refining the psychological constructs behind WML, by exploring their neural signatures, by using these insights for sophisticated task designs, and by optimizing algorithms for analyzing electroencephalography (EEG) data. Based on this strategy we applied machine-learning algorithms for cross-task classifications of different levels of WML to tasks that involve studying realistic instructional materials. We obtained very promising results that yield several recommendations for future work.

摘要

根据认知负荷理论 (CLT),成功学习的关键因素之一是学习者在学习教学材料时所经历的工作记忆负荷 (WML) 的类型和数量。最佳学习条件的特点是为学习者提供挑战,而不会导致认知超载或欠载。因此,以一种 WML 始终保持在与学习者工作记忆能力相关的最佳范围内的方式呈现教学内容,可能是提供这些最佳条件的好方法。本文详细阐述了如何通过结合认知心理学、神经科学和计算机科学的方法来开发实现这一目标的数字学习环境。需要克服的最大障碍之一是缺乏一种不引人注目的实时连续评估学习者 WML 的方法。我们建议通过将被动脑机接口 (BCI) 方法应用于数字环境中的现实学习场景来解决这个问题。在本文中,我们根据文献和我们自己的研究结果讨论了这种方法的方法和理论前景和陷阱。我们提出了一种策略,即如何通过细化 WML 背后的心理结构、探索其神经特征、将这些见解用于复杂的任务设计以及优化用于分析脑电图 (EEG) 数据的算法来应对将 BCI 应用于 WML 和学习的几个固有挑战。基于该策略,我们将机器学习算法应用于涉及研究现实教学材料的不同 WML 水平的跨任务分类任务中。我们获得了非常有前景的结果,为未来的工作提出了几项建议。

相似文献

2
Online EEG-Based Workload Adaptation of an Arithmetic Learning Environment.基于在线脑电图的算术学习环境工作量适配
Front Hum Neurosci. 2017 May 30;11:286. doi: 10.3389/fnhum.2017.00286. eCollection 2017.
3
Working memory load recognition with deep learning time series classification.基于深度学习时间序列分类的工作记忆负荷识别
Biomed Opt Express. 2024 Apr 3;15(5):2780-2797. doi: 10.1364/BOE.516063. eCollection 2024 May 1.
6
Passive Brain-Computer Interfaces for Enhanced Human-Robot Interaction.用于增强人机交互的被动式脑机接口。
Front Robot AI. 2020 Oct 2;7:125. doi: 10.3389/frobt.2020.00125. eCollection 2020.

引用本文的文献

10
Comparing online cognitive load on mobile versus PC-based devices.比较移动设备与基于个人电脑的设备上的在线认知负荷。
Pers Ubiquitous Comput. 2023;27(2):495-505. doi: 10.1007/s00779-022-01707-8. Epub 2022 Dec 28.

本文引用的文献

4
A meta-analysis of executive components of working memory.工作记忆执行成分的荟萃分析。
Cereb Cortex. 2013 Feb;23(2):264-82. doi: 10.1093/cercor/bhs007. Epub 2012 Feb 7.
7
Working memory: theories, models, and controversies.工作记忆:理论、模型与争议
Annu Rev Psychol. 2012;63:1-29. doi: 10.1146/annurev-psych-120710-100422. Epub 2011 Sep 27.
10
Theta power as a marker for cognitive interference.θ 波功率作为认知干扰的标志物。
Clin Neurophysiol. 2011 Nov;122(11):2185-94. doi: 10.1016/j.clinph.2011.03.030. Epub 2011 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验