School of Computer Science, Hubei University of Technology, Wuhan, China.
Robarts Research Institute, Western University, London, Canada.
Math Biosci Eng. 2023 Jan;20(2):1617-1636. doi: 10.3934/mbe.2023074. Epub 2022 Nov 3.
Carotid total plaque area (TPA) is an important contributing measurement to the evaluation of stroke risk. Deep learning provides an efficient method for ultrasound carotid plaque segmentation and TPA quantification. However, high performance of deep learning requires datasets with many labeled images for training, which is very labor-intensive. Thus, we propose an image reconstruction-based self-supervised learning algorithm (IR-SSL) for carotid plaque segmentation when few labeled images are available. IR-SSL consists of pre-trained and downstream segmentation tasks. The pre-trained task learns region-wise representations with local consistency by reconstructing plaque images from randomly partitioned and disordered images. The pre-trained model is then transferred to the segmentation network as the initial parameters in the downstream task. IR-SSL was implemented with two networks, UNet++ and U-Net, and evaluated on two independent datasets of 510 carotid ultrasound images from 144 subjects at SPARC (London, Canada) and 638 images from 479 subjects at Zhongnan hospital (Wuhan, China). Compared to the baseline networks, IR-SSL improved the segmentation performance when trained on few labeled images (n = 10, 30, 50 and 100 subjects). For 44 SPARC subjects, IR-SSL yielded Dice-similarity-coefficients (DSC) of 80.14-88.84%, and algorithm TPAs were strongly correlated (r=0.962-0.993, p < 0.001) with manual results. The models trained on the SPARC images but applied to the Zhongnan dataset without retraining achieved DSCs of 80.61-88.18% and strong correlation with manual segmentation (r=0.852-0.978, p < 0.001). These results suggest that IR-SSL could improve deep learning when trained on small labeled datasets, making it useful for monitoring carotid plaque progression/regression in clinical use and trials.
颈动脉总斑块面积(TPA)是评估中风风险的一个重要指标。深度学习为颈动脉斑块分割和 TPA 定量提供了一种高效的方法。然而,深度学习的高性能需要大量带标签图像进行训练,这非常耗费人力。因此,当可用的带标签图像很少时,我们提出了一种基于图像重建的自监督学习算法(IR-SSL)用于颈动脉斑块分割。IR-SSL 由预训练和下游分割任务组成。预训练任务通过从随机分割和无序图像中重建斑块图像来学习具有局部一致性的区域表示。然后,将预训练模型作为下游任务的初始参数转移到分割网络中。IR-SSL 采用了 UNet++和 U-Net 两种网络进行实现,并在来自加拿大伦敦 SPARC 中心的 144 名患者的 510 张颈动脉超声图像和来自中国武汉中南医院的 479 名患者的 638 张图像的两个独立数据集上进行了评估。与基线网络相比,IR-SSL 在训练少量带标签图像(n=10、30、50 和 100 名患者)时提高了分割性能。对于 44 名 SPARC 患者,IR-SSL 的 Dice 相似系数(DSC)为 80.14-88.84%,并且算法 TPA 与手动结果具有很强的相关性(r=0.962-0.993,p<0.001)。在未重新训练的情况下,使用在 SPARC 图像上训练的模型但应用于中南数据集,得到的 DSC 为 80.61-88.18%,与手动分割具有很强的相关性(r=0.852-0.978,p<0.001)。这些结果表明,IR-SSL 可以在训练小的带标签数据集时提高深度学习的性能,使其在临床应用和试验中监测颈动脉斑块进展/消退时非常有用。