Department of Radiation Oncology, Amsterdam UMC (location VUmc), the Netherlands.
Department of Radiation Oncology, Amsterdam UMC (location VUmc), the Netherlands.
Radiother Oncol. 2024 Sep;198:110376. doi: 10.1016/j.radonc.2024.110376. Epub 2024 Jun 8.
Use of stereotactic ablative radiotherapy (SABR) for central lung tumors can result in up to a 35% incidence of late pulmonary toxicity. We evaluated an automated scoring method to quantify post-SABR bronchial changes by using artificial intelligence (AI)-based airway segmentation.
Central lung SABR patients treated at Amsterdam UMC (AUMC, internal reference dataset) and Peter MacCallum Cancer Centre (PMCC, external validation dataset) were identified. Patients were eligible if they had pre- and post-SABR CT scans with ≤ 1 mm resolution. The first step of the automated scoring method involved AI-based airway auto-segmentation using MEDPSeg, an end-to-end deep learning-based model. The Vascular Modeling Toolkit in 3D Slicer was then used to extract a centerline curve through the auto-segmented airway lumen, and cross-sectional measurements were computed along each bronchus for all CT scans. For AUMC patients, airway stenosis/occlusion was evaluated by both visual assessment and automated scoring. Only the automated method was applied to the PMCC dataset.
Study patients comprised 26 from AUMC, and 33 from PMCC. Visual scoring identified stenosis/occlusion in 8 AUMC patients (31 %), most frequently in the segmental bronchi. After airway auto-segmentation, minor manual edits were needed in 9 % of patients. Segmentation for a single scan averaged 83sec (range 73-136). Automated scoring nearly doubled detected airway stenosis/occlusion (n = 15, 58 %), and allowed for earlier detection in 5/8 patients who had also visually scored changes. Estimated rates were 48 % and 66 % at 1- and 2-years, respectively, for the internal dataset. The automated detection rate was 52 % in the external dataset, with 1- and 2-year risks of 56 % and 61 %, respectively.
An AI-based automated scoring method allows for detection of more bronchial stenosis/occlusion after lung SABR, and at an earlier time-point. This tool can facilitate studies to determine early airway changes and establish more reliable airway tolerance doses.
立体定向消融放疗(SABR)治疗中央型肺部肿瘤可能导致高达 35%的晚期肺毒性发生率。我们评估了一种自动评分方法,通过基于人工智能(AI)的气道分割来量化 SABR 后支气管变化。
在阿姆斯特丹 UMC(AUMC,内部参考数据集)和彼得麦卡勒姆癌症中心(PMCC,外部验证数据集)中确定接受 SABR 治疗的中央型肺部 SABR 患者。如果患者有≤1mm 分辨率的 SABR 前后 CT 扫描,则符合条件。自动评分方法的第一步涉及使用 MEDPSeg 进行基于 AI 的气道自动分割,这是一种端到端的深度学习模型。然后,在 3D Slicer 中使用血管建模工具包提取自动分割气道管腔的中心线曲线,并计算所有 CT 扫描中每个支气管的横截面测量值。对于 AUMC 患者,通过视觉评估和自动评分评估气道狭窄/闭塞。仅在 PMCC 数据集上应用了自动方法。
研究患者包括 26 例来自 AUMC 和 33 例来自 PMCC。视觉评分在 8 例 AUMC 患者(31%)中发现狭窄/闭塞,最常见于节段性支气管。在气道自动分割后,9%的患者需要进行轻微的手动编辑。单个扫描的平均分割时间为 83 秒(范围为 73-136 秒)。自动评分几乎使检测到的气道狭窄/闭塞增加了一倍(n=15,58%),并使 5/8 名已进行视觉评分的患者更早地发现了变化。内部数据集的估计发生率分别为 1 年和 2 年时的 48%和 66%。外部数据集的自动检测率为 52%,1 年和 2 年的风险分别为 56%和 61%。
基于人工智能的自动评分方法可以在 SABR 治疗后更早期地检测到更多的支气管狭窄/闭塞。这种工具可以促进研究确定早期气道变化并建立更可靠的气道耐受剂量。