Laboratory of Preparation and Computing of Nanomaterials (LPCN), Federal University of Pará, C. P. 479, Belém, PA, 66075-110, Brazil.
Graduate Program in Natural Resources Engineering of the Amazon, ITEC, Federal University of Pará, C. P. 2626, Belém, PA, 66050-540, Brazil.
J Mol Model. 2024 Jun 11;30(7):203. doi: 10.1007/s00894-024-05996-z.
The Omicron, Kappa, and Delta variants are different strains of the SARS-CoV-2 virus. Graphene oxide quantum dots (GOQDs) represent a burgeoning class of oxygen-enriched, zero-dimensional materials characterized by their sub-20-nm dimensions. Exhibiting pronounced quantum confinement and edge effects, GOQDs manifest exceptional physical-chemical attributes. This study delves into the potential of graphene oxide quantum dots, elucidating their inherent properties pertinent to the surface structures of SARS-CoV-2, employing an integrated computational approach for the repositioning of inhibitory agents.
Following rigorous adjustment tests, a spectrum of divergent bonding conformations emerged, with particular emphasis placed on identifying the conformation exhibiting optimal adjustment scores and interactions. The investigation employed molecular docking simulations integrating affinity energy evaluations, electrostatic potential clouds, molecular dynamics encompassing average square root calculations, and the computation of Gibbs-free energy. These values quantify the strength of interaction between GOQDs and SARS-CoV-2 spike protein variants. The receptor structures were optimized using the CHARM-GUI server employing force field AMBERFF14SB. The algorithm embedded in CHARMM offers an efficient interpolation scheme and automatic step size selection, enhancing the efficiency of the optimization process. The 3D structures of the ligands are constructed and optimized with density functional theory (DFT) method based on the most stable conformer of each binder. Autodock Vina Software (ADV) was utilized, where essential parameters were specified. Electrostatic potential maps (MEPs) provide a visual depiction of molecules' charge distributions and related properties. After this, molecular dynamics simulations employing the CHARM36 force field in Gromacs 2022.2 were conducted to investigate GOs' interactions with surface macromolecules of SARS-CoV-2 in an explicit aqueous environment. Furthermore, our investigation suggests that lower values indicate stronger binding. Notably, GO-E consistently showed the most negative values across interactions with different variants, suggesting a higher affinity compared to other GOQDs (GO-A to GO-D).
奥密克戎、卡帕和德尔塔变异株是 SARS-CoV-2 病毒的不同变体。氧化石墨烯量子点 (GOQDs) 代表了一类新兴的富氧零维材料,其特点是尺寸小于 20nm。GOQDs 表现出明显的量子限制和边缘效应,具有独特的物理化学特性。本研究探讨了氧化石墨烯量子点的潜力,阐明了它们与 SARS-CoV-2 表面结构相关的固有特性,采用综合计算方法重新定位抑制剂。
经过严格的调整测试,出现了一系列不同的键合构象,特别强调确定表现出最佳调整分数和相互作用的构象。该研究采用分子对接模拟,结合亲和力能量评估、静电势能云、包含平均平方根计算的分子动力学以及吉布斯自由能计算。这些值量化了 GOQDs 与 SARS-CoV-2 刺突蛋白变体之间相互作用的强度。使用 CHARM-GUI 服务器对受体结构进行优化,采用 AMBERFF14SB 力场。CHARMM 中嵌入的算法提供了一种高效的插值方案和自动步长选择,提高了优化过程的效率。配体的 3D 结构是基于每个配体的最稳定构象构建和优化的,并采用基于密度泛函理论(DFT)的方法。使用 Autodock Vina 软件(ADV),指定了必要的参数。静电势能图(MEPs)提供了分子电荷分布和相关性质的直观描述。之后,在 Gromacs 2022.2 中使用 CHARM36 力场进行分子动力学模拟,以研究 GO 在含水环境中与 SARS-CoV-2 表面大分子的相互作用。此外,我们的研究表明,较低的值表示更强的结合。值得注意的是,与其他 GOQDs(GO-A 至 GO-D)相比,GO-E 在与不同变体的相互作用中始终表现出最负的数值,表明其亲和力更高。