Tulane University School of Medicine, New Orleans, LA, USA.
Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
Eye (Lond). 2024 Oct;38(14):2701-2710. doi: 10.1038/s41433-024-03132-y. Epub 2024 Jun 10.
Multiple Sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system (CNS) characterized by inflammation, demyelination, and axonal damage. Early recognition and treatment are important for preventing or minimizing the long-term effects of the disease. Current gold standard modalities of diagnosis (e.g., CSF and MRI) are invasive and expensive in nature, warranting alternative methods of detection and screening. Oculomics, the interdisciplinary combination of ophthalmology, genetics, and bioinformatics to study the molecular basis of eye diseases, has seen rapid development through various technologies that detect structural, functional, and visual changes in the eye. Ophthalmic biomarkers (e.g., tear composition, retinal nerve fibre layer thickness, saccadic eye movements) are emerging as promising tools for evaluating MS progression. The eye's structural and embryological similarity to the brain makes it a potentially suitable assessment of neurological and microvascular changes in CNS. In the advent of more powerful machine learning algorithms, oculomics screening modalities such as optical coherence tomography (OCT), eye tracking, and protein analysis become more effective tools aiding in MS diagnosis. Artificial intelligence can analyse larger and more diverse data sets to potentially discover new parameters of pathology for efficiently diagnosing MS before symptom onset. While there is no known cure for MS, the integration of oculomics with current modalities of diagnosis creates a promising future for developing more sensitive, non-invasive, and cost-effective approaches to MS detection and diagnosis.
多发性硬化症(MS)是一种中枢神经系统(CNS)的慢性自身免疫性脱髓鞘疾病,其特征为炎症、脱髓鞘和轴突损伤。早期识别和治疗对于预防或最大限度地减少疾病的长期影响非常重要。目前用于诊断多发性硬化症的金标准方法(例如,CSF 和 MRI)具有侵入性且费用高昂,因此需要替代的检测和筛查方法。眼科学、遗传学和生物信息学相结合的交叉学科——眼科学,通过检测眼睛的结构、功能和视觉变化的各种技术得到了快速发展。眼科学标志物(例如,泪液成分、视网膜神经纤维层厚度、眼跳运动)作为评估多发性硬化症进展的有前途的工具正在出现。眼睛在结构和胚胎发生上与大脑相似,使其成为评估中枢神经系统神经和微血管变化的潜在合适评估方法。随着更强大的机器学习算法的出现,眼科学筛查方法(如光学相干断层扫描(OCT)、眼动追踪和蛋白质分析)成为更有效的辅助多发性硬化症诊断的工具。人工智能可以分析更大和更多样化的数据集,从而有可能在症状出现前发现新的病理学参数,从而有效地诊断多发性硬化症。虽然多发性硬化症目前还没有治愈方法,但将眼科学与当前的诊断方法相结合,为开发更敏感、非侵入性和更具成本效益的多发性硬化症检测和诊断方法创造了一个有前途的未来。