Suppr超能文献

一种用于高效无人机目标检测的新型轻量级网络。

A new lightweight network for efficient UAV object detection.

作者信息

Hua Wei, Chen Qili, Chen Wenbai

机构信息

Beijing Information Science and Technology University, Beijing, 100192, China.

出版信息

Sci Rep. 2024 Jun 10;14(1):13288. doi: 10.1038/s41598-024-64232-z.

Abstract

Optimizing the structure of deep neural networks is essential in many applications. Especially in the object detection tasks of Unmanned Aerial Vehicles. Due to the constraints of the onboard platform, a more efficient network is required to meet practical demands. Nevertheless, existing lightweight detection networks exhibit excessive redundant computations and may yield in a certain level of accuracy loss. To address these issues, this paper proposes a new lightweight network structure named Cross-Stage Partially Deformable Network (CSPDNet). The initial proposal consists of a Deformable Separable Convolution Block (DSCBlock), separating feature channels, greatly reducing the computational load of convolution, and applying adaptive sampling to the separated feature map. Subsequently, to establish information interaction between feature layers, a channel weighting module is proposed. This module calculates weights for the separated feature map, facilitating information exchange across channels and resolutions. Moreover, it compensates for the effect of point-wise (1 1) convolutions, filtering out more important feature information. Furthermore, a new CSPDBlock is designed, primarily composed of DSCBlock, establishing multidimensional feature correlations for each separated feature layer. This approach improves the ability to capture critical feature information and reconstruct gradient paths, thereby preserving detection accuracy. The proposed technology achieves a balance between model parameter size and detection accuracy. Furthermore, experimental results on object detection datasets demonstrate that our designed network, using fewer parameters, achieves competitive detection performance results compared to existing lightweight networks YOLOv5n, YOLOv6n, YOLOv8n, NanoDet and PP-PicoDet. The optimization effect of the designed CSPDBlock, using the VisDrone dataset, is validated when incorporated into advanced detection algorithms YOLOv5m, PPYOLOEm, YOLOv7, RTMDetm and YOLOv8m. In more detail, by incorporating the designed modules it was achieved that the parameters were reduced by 10-20% while almost maintaining detection accuracy.

摘要

优化深度神经网络的结构在许多应用中至关重要。特别是在无人机的目标检测任务中。由于机载平台的限制,需要更高效的网络来满足实际需求。然而,现有的轻量级检测网络存在过多的冗余计算,可能会导致一定程度的精度损失。为了解决这些问题,本文提出了一种名为跨阶段部分可变形网络(CSPDNet)的新型轻量级网络结构。最初的方案由一个可变形可分离卷积块(DSCBlock)组成,它分离特征通道,大大减少了卷积的计算量,并对分离后的特征图应用自适应采样。随后,为了在特征层之间建立信息交互,提出了一个通道加权模块。该模块为分离后的特征图计算权重,促进跨通道和分辨率的信息交换。此外,它还补偿了逐点(1×1)卷积的影响,过滤掉更重要的特征信息。此外,设计了一种新的CSPDBlock,主要由DSCBlock组成,为每个分离的特征层建立多维特征相关性。这种方法提高了捕获关键特征信息和重建梯度路径的能力,从而保持检测精度。所提出的技术在模型参数大小和检测精度之间实现了平衡。此外,在目标检测数据集上的实验结果表明,我们设计的网络使用更少的参数,与现有的轻量级网络YOLOv5n、YOLOv6n、YOLOv8n、NanoDet和PP-PicoDet相比,实现了具有竞争力的检测性能结果。当将设计的CSPDBlock纳入先进的检测算法YOLOv5m、PPYOLOEm、YOLOv7、RTMDetm和YOLOv8m时,使用VisDrone数据集验证了其优化效果。更详细地说,通过纳入设计的模块,实现了参数减少10%-20%,同时几乎保持检测精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/add7/11164857/8ebd7a323b0f/41598_2024_64232_Fig1_HTML.jpg

相似文献

1
A new lightweight network for efficient UAV object detection.
Sci Rep. 2024 Jun 10;14(1):13288. doi: 10.1038/s41598-024-64232-z.
3
A Lightweight and Accurate UAV Detection Method Based on YOLOv4.
Sensors (Basel). 2022 Sep 11;22(18):6874. doi: 10.3390/s22186874.
4
Driver distraction detection based on lightweight networks and tiny object detection.
Math Biosci Eng. 2023 Sep 22;20(10):18248-18266. doi: 10.3934/mbe.2023811.
5
A lightweight YOLOv7 insulator defect detection algorithm based on DSC-SE.
PLoS One. 2023 Dec 20;18(12):e0289162. doi: 10.1371/journal.pone.0289162. eCollection 2023.
6
Chili Pepper Object Detection Method Based on Improved YOLOv8n.
Plants (Basel). 2024 Aug 28;13(17):2402. doi: 10.3390/plants13172402.
7
Enhanced Lightweight YOLOX for Small Object Wildfire Detection in UAV Imagery.
Sensors (Basel). 2024 Apr 24;24(9):2710. doi: 10.3390/s24092710.
9
Real-Time Vehicle-Detection Method in Bird-View Unmanned-Aerial-Vehicle Imagery.
Sensors (Basel). 2019 Sep 13;19(18):3958. doi: 10.3390/s19183958.
10
MPE-YOLO: enhanced small target detection in aerial imaging.
Sci Rep. 2024 Aug 1;14(1):17799. doi: 10.1038/s41598-024-68934-2.

本文引用的文献

1
CEModule: A Computation Efficient Module for Lightweight Convolutional Neural Networks.
IEEE Trans Neural Netw Learn Syst. 2023 Sep;34(9):6069-6080. doi: 10.1109/TNNLS.2021.3133127. Epub 2023 Sep 1.
2
ChannelNets: Compact and Efficient Convolutional Neural Networks via Channel-Wise Convolutions.
IEEE Trans Pattern Anal Mach Intell. 2021 Aug;43(8):2570-2581. doi: 10.1109/TPAMI.2020.2975796. Epub 2021 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验