Suppr超能文献

Research on the removal characteristics of surface error with different spatial frequency based on shear thickening polishing method.

作者信息

Wang Yusheng, Hu Jie, Dai Yifan, Hu Hao, Wang Yu, Peng Wenxiang, Du Chunyang

出版信息

Opt Express. 2024 May 20;32(11):19626-19644. doi: 10.1364/OE.518614.

Abstract

X-ray mirrors, which are essential for constructing synchrotron radiation light sources, are highly required for full-range spatial wavelength errors. This paper investigated power-law non-Newtonian fluids and pointed out that both three-body removal and shear removal existed in the shear thickening polishing process. Subsequently, this paper calculates the shear force of the power-law non-Newtonian fluid polishing fluid in polishing the surface with different frequency errors. It establishes an MRR model of shear thickening polishing in the frequency domain by combining it with the Archard equation. Then, this model is also applied to optimize the polishing fluid formulation and processing parameters. Finally, the removal effect of the optimized polishing fluid on the mid-frequency ripple error is experimentally verified. On Ф50 mm monocrystalline silicon, the removal of mid-frequency ripple error with a spatial wavelength of 1 mm was achieved by shear thickening polishing technique while converging the surface roughness to 0.14 nm. Finally, the experimental results were applied to monocrystalline silicon with a length of 500 mm. This work provides a new research idea for the existing shear thickening polishing process. It provides theoretical and technical support for removing the mid- and high-frequency errors in high-precision X-ray mirrors.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验