Patel Raj N, Fishman Rebecca E K, Huang Tzu-Yung, Gusdorff Jordan A, Fehr David A, Hopper David A, Breitweiser S Alex, Porat Benjamin, Flatté Michael E, Bassett Lee C
Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Nano Lett. 2024 Jun 26;24(25):7623-7628. doi: 10.1021/acs.nanolett.4c01333. Epub 2024 Jun 11.
Hexagonal boron nitride (h-BN) hosts pure single-photon emitters that have shown evidence of optically detected electronic spin dynamics. However, the electrical and chemical structures of these optically addressable spins are unknown, and the nature of their spin-optical interactions remains mysterious. Here, we use time-domain optical and microwave experiments to characterize a single emitter in h-BN exhibiting room temperature optically detected magnetic resonance. Using dynamical simulations, we constrain and quantify transition rates in the model, and we design optical control protocols that optimize the signal-to-noise ratio for spin readout. This constitutes a necessary step toward quantum control of spin states in h-BN.
六方氮化硼(h-BN)中存在纯单光子发射器,这些发射器已显示出光学检测到的电子自旋动力学的证据。然而,这些可光学寻址自旋的电学和化学结构尚不清楚,其自旋-光学相互作用的本质仍然神秘。在这里,我们使用时域光学和微波实验来表征h-BN中一个表现出室温光学检测磁共振的单发射器。通过动力学模拟,我们在模型中约束并量化跃迁速率,并设计光学控制协议以优化自旋读出的信噪比。这是朝着h-BN中自旋态的量子控制迈出的必要一步。