M Gilardoni Carmem, Eizagirre Barker Simone, Curtin Catherine L, Fraser Stephanie A, Powell Oliver F J, Lewis Dillon K, Deng Xiaoxi, Ramsay Andrew J, Adhikari Sonachand, Li Chi, Aharonovich Igor, Tan Hark Hoe, Atatüre Mete, Stern Hannah L
Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, Urca, Rio de Janeiro, 22290-180, RJ, Brazil.
Nat Commun. 2025 May 28;16(1):4947. doi: 10.1038/s41467-025-59642-0.
Quantum sensing based on solid-state spin defects provides a uniquely versatile platform for nanoscale magnetometry under diverse environmental conditions. Operation of most sensors used to-date is based on projective measurement along a single axis combined with computational extrapolation. Here, we show that an individually addressable carbon-related spin defect in hexagonal boron nitride is a multi-axis nanoscale sensor with large dynamic range. For this spin-1 system, we demonstrate how its spin-dependent photodynamics give rise to three optically detected spin resonances that show up to 90% contrast and are not quenched under off-axis magnetic field exceeding 100 mT, enabling sensitivity. Finally, we show how this system can be used to unambiguously determine the three components of a target magnetic field via the use of two bias fields. Alongside these features, the room-temperature operation and the nanometer-scale proximity enabled by the van der Waals host material further consolidate this system as a promising quantum sensing platform.
基于固态自旋缺陷的量子传感为在各种环境条件下进行纳米级磁力测量提供了一个独特的通用平台。迄今为止,大多数传感器的操作基于沿单轴的投影测量并结合计算外推。在此,我们展示了六方氮化硼中一个可单独寻址的碳相关自旋缺陷是一个具有大动态范围的多轴纳米级传感器。对于这个自旋为1的系统,我们展示了其自旋相关的光动力学如何产生三种光学检测到的自旋共振,这些共振显示出高达90%的对比度,并且在超过100 mT的离轴磁场下不会淬灭,从而实现了高灵敏度。最后,我们展示了该系统如何通过使用两个偏置场来明确确定目标磁场的三个分量。除了这些特性外,范德华主体材料实现的室温操作和纳米级间距进一步巩固了该系统作为一个有前途的量子传感平台的地位。