Wang Zhiyu, Ong Chiat Ling Jasmine, Fu Zhiyan
Integrated Health Information Systems (IHIS), Singapore, Singapore.
Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.
Front Pharmacol. 2022 Feb 8;13:801928. doi: 10.3389/fphar.2022.801928. eCollection 2022.
Effective treatment using antibiotic vancomycin requires close monitoring of serum drug levels due to its narrow therapeutic index. In the current practice, physicians use various dosing algorithms for dosage titration, but these algorithms reported low success in achieving therapeutic targets. We explored using artificial intelligent to assist vancomycin dosage titration. We used a novel method to generate the label for each record and only included records with appropriate label data to generate a clean cohort with 2,282 patients and 7,912 injection records. Among them, 64% of patients were used to train two machine learning models, one for initial dose recommendation and another for subsequent dose recommendation. The model performance was evaluated using two metrics: PAR, a pharmacology meaningful metric defined by us, and Mean Absolute Error (MAE), a commonly used regression metric. In our 3-year data, only a small portion (34.1%) of current injection doses could reach the desired vancomycin trough level (14-20 ). Both PAR and MAE of our machine learning models were better than the classical pharmacokinetic models. Our model also showed better performance than the other previously developed machine learning models in our test data. We developed machine learning models to recommend vancomycin dosage. Our results show that the new AI-assisted dosage titration approach has the potential to improve the traditional approaches. This is especially useful to guide decision making for inexperienced doctors in making consistent and safe dosing recommendations for high-risk medications like vancomycin.
由于抗生素万古霉素的治疗指数较窄,使用其进行有效治疗需要密切监测血清药物水平。在当前的实践中,医生使用各种给药算法进行剂量滴定,但这些算法在实现治疗目标方面成功率较低。我们探索使用人工智能来辅助万古霉素剂量滴定。我们使用一种新颖的方法为每条记录生成标签,并且只纳入具有适当标签数据的记录,以生成一个包含2282名患者和7912条注射记录的纯净队列。其中,64%的患者被用于训练两个机器学习模型,一个用于初始剂量推荐,另一个用于后续剂量推荐。使用两个指标评估模型性能:PAR,这是我们定义的一个具有药理学意义的指标,以及平均绝对误差(MAE),这是一个常用的回归指标。在我们三年的数据中,当前只有一小部分(34.1%)注射剂量能够达到所需的万古霉素谷浓度(14 - 20)。我们机器学习模型的PAR和MAE均优于经典药代动力学模型。在我们的测试数据中,我们的模型也比其他先前开发的机器学习模型表现更好。我们开发了机器学习模型来推荐万古霉素剂量。我们的结果表明,新的人工智能辅助剂量滴定方法有潜力改进传统方法。这对于指导经验不足的医生在为万古霉素等高风险药物做出一致且安全的给药推荐时进行决策尤其有用。